3-chloro-1,2-propanediol (3-MCPD) is a newly discovered food process pollutant with nephrotoxicity. And the mechanism by which 3-MCPD affects male spermatogenesis has not been fully studied. Cell viability, blood-testis barrier (BTB) related protein, progesterone content, reactive oxygen species (ROS) generation, and cell apoptosis were determined by a CCK8 assay, western blot, ELISA, flow cytometry, and TUNEL staining, respectively. Wistar rats were divided into three groups: low-dose 3-MCPD, high-dose 3-MCPD, and control. Sperm parameters, hormonal levels, and biomarkers of oxidative stress in the testis and epididymis were detected by ELISA. Multiple molecular experiments including molecular docking and western blot were used to elucidate the underlying mechanisms. 3-MCPD affects testicular cell activity, and promotes ROS production and apoptosis. Disrupting the integrity of BTB in the body, downregulating sex hormones and sperm quality, and promoting apoptosis. 3-MCPD may function through CYP2C9. This study preliminarily explores the mechanism by which 3-MCPD affects spermatogenesis. It was found that 3-MCPD destroys the structure and function of BTB and damages the testicular function of male mice, thus affecting the process of spermatogenesis via CYP2C9.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.reprotox.2024.108633 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!