Targeted bisulfite sequencing of Scots pine adaptation-related genes.

Plant Sci

Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland.

Published: September 2024

During environmental changes, epigenetic processes can enable adaptive responses faster than natural selection. In plants, very little is known about the role of DNA methylation during long-term adaptation. Scots pine is a widely distributed coniferous species which must adapt to different environmental conditions throughout its long lifespan. Thus, epigenetic modifications may contribute towards this direction. We provide bisulfite next-generation sequencing data from the putative promoters and exons of eight adaptation-related genes (A3IP2, CCA1, COL1, COL2, FTL2, MFT1, PHYO, and ZTL) in three Scots pine populations located in northern and southern parts of Finland. DNA methylation levels were studied in the two seed tissues: the maternal megagametophyte which contributes to embryo viability, and the biparental embryo which represents the next generation. In most genes, differentially methylated cytosines (DMCs) were in line with our previously demonstrated gene expression differences found in the same Scots pine populations. In addition, we found a strong correlation of total methylation levels between the embryo and megagametophyte tissues of a given individual tree, which indicates that DNA methylation can be inherited from the maternal parent. In conclusion, our results imply that DNA methylation differences may contribute to the adaptation of Scots pine populations in different climatic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2024.112173DOI Listing

Publication Analysis

Top Keywords

scots pine
20
dna methylation
16
pine populations
12
adaptation-related genes
8
adaptation scots
8
methylation levels
8
scots
5
pine
5
methylation
5
targeted bisulfite
4

Similar Publications

Isotopic pulse-labelling of photosynthate allows tracing of carbon (C) from tree canopies to belowground biota and calculations of its turnover in roots and recipient soil microorganisms. A high concentration of label is desirable, but is difficult to achieve in field studies of intact ecosystem patches with trees. Moreover, root systems of trees overlap considerably in most forests, which requires a large labelled area to minimize the impact of C allocated belowground by un-labelled trees.

View Article and Find Full Text PDF

Diplodia sapinea (Fr.) Fuckel is a widespread fungal pathogen affecting conifers worldwide. Infections can lead to severe symptoms, such as shoot blight, canker, tree death, or blue stain in harvested wood, especially in Pinus species.

View Article and Find Full Text PDF

A soil-vegetation-atmospheric transfer (SVAT) model for radon and its progeny is presented to improve process-level understanding of the role of forests in taking-up radionuclides from soil radon outgassing. A dynamic system of differential equations couples soil, tree (Scots pine) and atmospheric processes, treating the trees as sources, sinks and conduits between the atmosphere and the soil. The model's compartments include a dual-layer soil column undergoing hydrological and solute transport, the tree system (comprising roots, wood, litter, and foliage) and the atmosphere, with physical processes governing the transfers of water and radon products between these compartments.

View Article and Find Full Text PDF

Premise: Tree structure and function are constrained by and acclimate to climatic conditions. Drought limits plant growth and carbon acquisition and can result in "legacy" effects that last beyond the period of water stress. Leaf and twig-level legacy effects of past water abundance, such as that experienced by trees that established under wetter conditions are unknown.

View Article and Find Full Text PDF

New saga in Finland: The rise of Diplodia sapinea in Scots pine.

Fungal Genet Biol

December 2024

Natural Resources Institute, (Luke), Natural Resources / Forest health and Biodiversity, Helsinki, Finland.

The intensity of fungal virulence is likely to increase in northern forests as climate change alters environmental conditions, favoring pathogen proliferation in existing ecosystems while also facilitating their expansion into new geographic areas. In Finland, Diplodia sapinea, the causal agent of disease called "Diplodia tip blight", has emerged as a new pathogen within the past few years. To reveal the current distribution of the novel fungal pathogen, and the effect of temperature and rainfall on its distribution, we utilized citizen science for the detection and collection of symptomatic Scots pine (Pinus sylvestris) shoots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!