About 140 million people worldwide live at an altitude above 2500 m. Studies have showed an increase of the incidence of hyperuricemia among plateau populations, but little is known about the possible mechanisms. This study aims to assess the effects of high altitude on hyperuricemia and explore the corresponding mechanisms at the histological, inflammatory and molecular levels. This study finds that intermittent hypobaric hypoxia (IHH) exposure results in an increase of serum uric acid level and a decrease of uric acid clearance rate. Compared with the control group, the IHH group shows significant increases in hemoglobin concentration (HGB) and red blood cell counts (RBC), indicating that high altitude hyperuricemia is associated with polycythemia. This study also shows that IHH exposure induces oxidative stress, which causes the injury of liver and renal structures and functions. Additionally, altered expressions of organic anion transporter 1 (OAT1) and organic cation transporter 1 (OCT1) of kidney have been detected in the IHH exposed rats. The adenosine deaminase (ADA) expression levels and the xanthione oxidase (XOD) and ADA activity of liver of the IHH exposure group have significantly increased compared with those of the control group. Furthermore, the spleen coefficients, IL-2, IL-1β and IL-8, have seen significant increases among the IHH exposure group. TLR/MyD88/NF-κB pathway is activated in the process of IHH induced inflammatory response in joints. Importantly, these results jointly show that IHH exposure causes hyperuricemia. IHH induced oxidative stress along with liver and kidney injury, unusual expression of the uric acid synthesis/excretion regulator and inflammatory response, thus suggesting a potential mechanism underlying IHH-induced hyperuricemia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2024.110078DOI Listing

Publication Analysis

Top Keywords

ihh exposure
20
high altitude
12
uric acid
12
ihh
9
liver kidney
8
kidney injury
8
altitude hyperuricemia
8
compared control
8
control group
8
oxidative stress
8

Similar Publications

Intrahepatic levels of microbiome-derived hippurate associates with improved metabolic dysfunction-associated steatotic liver disease.

Mol Metab

December 2024

University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom; The Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montréal, H3A 0G1, Canada. Electronic address:

Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterised by lipid accumulation in the liver and is often associated with obesity and type 2 diabetes. The gut microbiome recently emerged as a significant player of liver metabolism and health through the production of bioactive compounds that are beneficial for its host - "postbiotics". Circulating hippurate, a host-microbial co-metabolite produced by conjugating microbial benzoate with glycine in the host-liver, is associated with human gut microbial gene richness and with metabolic health.

View Article and Find Full Text PDF

Muscle injuries and the subsequent regeneration events compromise muscle homeostasis at morphological, functional and molecular levels. Among the molecular alterations, those derived from the mitochondrial function are especially relevant. We analysed the mitochondrial dynamics, the redox balance, the protein oxidation and the main protein repairing mechanisms after 9 days of injury in the rat gastrocnemius muscle.

View Article and Find Full Text PDF

Intermittent high altitude hypoxia induced liver and kidney injury leading to hyperuricemia.

Arch Biochem Biophys

August 2024

Academy of Military Medical Sciences, Tianjin 300050, China. Electronic address:

About 140 million people worldwide live at an altitude above 2500 m. Studies have showed an increase of the incidence of hyperuricemia among plateau populations, but little is known about the possible mechanisms. This study aims to assess the effects of high altitude on hyperuricemia and explore the corresponding mechanisms at the histological, inflammatory and molecular levels.

View Article and Find Full Text PDF

Simulated altitude is medicine: intermittent exposure to hypobaric hypoxia and cold accelerates injured skeletal muscle recovery.

J Physiol

November 2024

Secció de Fisiologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.

Muscle injuries are the leading cause of sports casualties. Because of its high plasticity, skeletal muscle can respond to different stimuli to maintain and improve functionality. Intermittent hypobaric hypoxia (IHH) improves muscle oxygen delivery and utilization.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and stereotyped behaviors. Although major advances in basic research on autism have been achieved in the past decade, and behavioral interventions can mitigate the difficulties that individuals with autism experience, little is known about the many fundamental issues of the interventions, and no specific medication has demonstrated efficiency for the core symptoms of ASD. Intermittent hypobaric hypoxia (IHH) is characterized by repeated exposure to lowered atmospheric pressure and oxygen levels, which triggers multiple physiological adaptations in the body.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!