In eukaryotes, the D-enantiomer of arabinose (D-Ara) is an intermediate in the biosynthesis of D-erythroascorbate in yeast and fungi and in the biosynthesis of the nucleotide sugar GDP-α-D-arabinopyranose (GDP-D-Arap) and complex α-D-Arap-containing surface glycoconjugates in certain trypanosomatid parasites. Whereas the biosynthesis of D-Ara in prokaryotes is well understood, the route from D-glucose (D-Glc) to D-Ara in eukaryotes is unknown. In this paper, we study the conversion of D-Glc to D-Ara in the trypanosomatid Crithidia fasciculata using positionally labeled [C]-D-Glc and [C]-D-ribose ([C]-D-Rib) precursors and a novel derivatization and gas chromatography-mass spectrometry procedure applied to a terminal metabolite, lipoarabinogalactan. These data implicate the both arms of pentose phosphate pathway and a likely role for D-ribulose-5-phosphate (D-Ru-5P) isomerization to D-Ara-5P. We tested all C. fasciculata putative sugar and polyol phosphate isomerase genes for their ability to complement a D-Ara-5P isomerase-deficient mutant of Escherichia coli and found that one, the glutamine fructose-6-phosphate aminotransferase (GFAT) of glucosamine biosynthesis, was able to rescue the E. coli mutant. We also found that GFAT genes of other trypanosomatid parasites, and those of yeast and human origin, could complement the E. coli mutant. Finally, we demonstrated biochemically that recombinant human GFAT can isomerize D-Ru-5P to D-Ara5P. From these data, we postulate a general eukaryotic pathway from D-Glc to D-Ara and discuss its possible significance. With respect to C. fasciculata, we propose that D-Ara is used not only for the synthesis of GDP-D-Arap and complex surface glycoconjugates but also in the synthesis of D-erythroascorbate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301363 | PMC |
http://dx.doi.org/10.1016/j.jbc.2024.107500 | DOI Listing |
J Biol Chem
August 2024
Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK. Electronic address:
Int J Biol Macromol
October 2020
Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:
In this paper, a novel acidic polysaccharide (CPS-1) was successively prepared from Gynostemma pentaphyllum using hot water isolation method to explore its antitumor and antioxidant activities. Structural characteristics of CPS-1 were evaluated by SEM, HPGPC, HPAEC-PAD, FT-IR, and NMR. The results indicated: CPS-1 was mainly composed of Ara, Gal, Glc, Xyl, Man, GalA and GlcA in a molar ratio of 1.
View Article and Find Full Text PDFInt J Biol Macromol
November 2019
Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, Jiangsu, China.
Molecules
August 2017
Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
In this study, purification, preliminary characterization and hepatoprotective effects of water-soluble polysaccharides from dandelion root (DRP) were investigated. Two polysaccharides, DRP1 and DRP2, were isolated from DRP. The two polysaccharides were α-type polysaccharides and didn't contain protein.
View Article and Find Full Text PDFFEMS Microbiol Lett
May 2000
Scottish Crop Research Institute, Division of Biochemistry and Cell Biology, Unit of Plant Biochemistry, Invergowrie, Dundee, UK.
Saccharomyces cerevisiae cells incubated with D-glucose (D-Glc), D-galactose or D-mannose (D-Man) synthesised D-erythroascorbic acid (D-EAA) but not L-ascorbic acid (L-AA). Accumulation of D-EAA was observed in cells incubated with D-arabinose (D-Ara) whilst accumulation of L-AA occurred in cells incubated with L-galactose (L-Gal), L-galactono-1,4-lactone and L-gulono-1,4-lactone. When S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!