The beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the predominant β-secretase, cleaving the amyloid precursor protein (APP) via the amyloidogenic pathway. In addition, BACE1 as an amyloid degrading enzyme (ADE), cleaves Aβ to produce the C-terminally truncated non-toxic Aβ fragment Aβ34 which is an indicator of amyloid clearance. Here, we analyzed the effects of BACE1 inhibitors on its opposing enzymatic functions, i.e., amyloidogenic (Aβ producing) and amyloidolytic (Aβ degrading) activities, using cell culture models with varying BACE1/APP ratios. Under high-level BACE1 expression, low-dose inhibition unexpectedly yielded a two-fold increase in Aβ42 and Aβ40 levels. The concomitant decrease in Aβ34 and secreted APPβ levels suggested that the elevated Aβ42 and Aβ40 levels were due to the attenuated Aβ degrading activity of BACE1. Notably, the amyloidolytic activity of BACE1 was impeded at lower BACE1 inhibitor concentrations compared to its amyloidogenic activity, thereby suggesting that the Aβ degrading activity of BACE1 was more sensitive to inhibition than its Aβ producing activity. Under endogenous BACE1 and APP levels, "low-dose" BACE1 inhibition affected both the Aβ producing and degrading activities of BACE1, i.e., significantly increased Aβ42/Aβ40 ratio and decreased Aβ34 levels, respectively. Further, we incubated recombinant BACE1 with synthetic Aβ peptides and found that BACE1 has a higher affinity for Aβ substrates over APP. In summary, our results suggest that stimulating BACE1's ADE activity and halting Aβ production without decreasing Aβ clearance could still be a promising therapeutic approach with new, yet to be developed, BACE1 modulators.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324814 | PMC |
http://dx.doi.org/10.1016/j.jbc.2024.107510 | DOI Listing |
Toxicol Lett
January 2018
ReNeuroGen LLC, Milwaukee, WI 53122, USA. Electronic address:
The eosinophilia-myalgia syndrome (EMS) outbreak of 1989 that occurred in the USA and elsewhere was caused by the ingestion of l-Tryptophan (L-Trp) solely manufactured by the Japanese company Showa Denko K.K. (SD).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2004
Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, CA 94107, USA.
The motor protein cytoplasmic dynein is responsible for most of the minus-end-directed microtubule traffic within cells. Dynein contains four evolutionarily conserved AAA (ATPase associated with various cellular activities) domains that are thought to bind nucleotide; the role of nucleotide binding and hydrolysis in each of these four AAA domains has constituted an important and unresolved question in understanding dynein's mechanism. Using Saccharomyces cerevisiae cytoplasmic dynein as a model system, we mutagenized residues involved in nucleotide binding or hydrolysis in the four AAA domains and examined the ability of the mutant dyneins to mediate nuclear segregation in vivo and to bind microtubules in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!