Polysaccharide-protein based scaffolds for cartilage repair and regeneration.

Int J Biol Macromol

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China. Electronic address:

Published: August 2024

AI Article Synopsis

Article Abstract

Cartilage repair and regeneration have become a global issue that millions of patients from all over the world need surgical intervention to repair the articular cartilage annually due to the limited self-healing capability of the cartilage tissues. Cartilage tissue engineering has gained significant attention in cartilage repair and regeneration by integration of the chondrocytes (or stem cells) and the artificial scaffolds. Recently, polysaccharide-protein based scaffolds have demonstrated unique and promising mechanical and biological properties as the artificial extracellular matrix of natural cartilage. In this review, we summarize the modification methods for polysaccharides and proteins. The preparation strategies for the polysaccharide-protein based hydrogel scaffolds are presented. We discuss the mechanical, physical and biological properties of the polysaccharide-protein based scaffolds. Potential clinical translation and challenges on the artificial scaffolds are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.133495DOI Listing

Publication Analysis

Top Keywords

polysaccharide-protein based
16
based scaffolds
12
cartilage repair
12
repair regeneration
12
artificial scaffolds
8
biological properties
8
cartilage
7
scaffolds
6
polysaccharide-protein
4
scaffolds cartilage
4

Similar Publications

Natural endogenous material-based vehicles for delivery of macromolecular drugs.

Chin J Nat Med

December 2024

Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Laboratory of innovative formulations and pharmaceutical excipients, Ningbo Institute of Marine Medicine, Peking University, Ningbo 315000, China. Electronic address:

Natural endogenous materials (NEMs), such as cell and cell derivatives, polysaccharide, protein and peptide, and nucleic acid-derived vectors, often exhibit biocompatibility, biodegradability and natural homing ability, which can minimize adverse reactions in vivo and have the potential to improve drug delivery efficacy. Currently, a variety of drug delivery systems (DDSs) based on NEMs have been constructed for macromolecules to address the challenges posed by their inherent large size, intricate structure, low permeability, and susceptibility to harsh environments. The aim of this article is to provide a comprehensive overview of various delivery strategies that predominantly utilize NEMs as carriers for macromolecular delivery.

View Article and Find Full Text PDF

Electrospray whey protein-polysaccharide microcapsules co-encapsulating Lactiplantibacillus plantarum and EGCG: Enhanced probiotic viability and antioxidant activity.

Int J Biol Macromol

December 2024

Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou, Zhejiang 317502, China; Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Wenling Institute of Big Data and Artificial Intelligence in Medicine, Taizhou, Zhejiang 317502, China. Electronic address:

Probiotics are often subjected to adverse factors during processing, storage and digestion. To enhance the viability and function of probiotics, whey protein concentrate (WPC)-based microcapsules were systematically fabricated to co-encapsulate probiotic Lactiplantibacillus plantarum KLDS 1.0328 (LP KLDS 1.

View Article and Find Full Text PDF

Formation mechanism and stability of ternary nanoparticles based on Mesona chinensis polysaccharides-walnut protein hydrolysates for icariin delivery.

Int J Biol Macromol

December 2024

Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Key State Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Polysaccharide-protein complexes have proven to be effective nano-carrier with high stability. In this work, walnut protein hydrolysates (WPH) prepared through limited enzymolysis were considered as encapsulation carriers to solve the limited water solubility and bioavailability of icariin, a bioactive compound in functional foods. The pH-driven method was employed to prepare WPH-icariin nanoparticles (WPHI).

View Article and Find Full Text PDF

Design strategies of polysaccharide, protein and lipid-based nano-delivery systems in improving the bioavailability of polyphenols and regulating gut homeostasis.

Int J Biol Macromol

December 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, PR China. Electronic address:

Polyphenols are plant secondary metabolites that have attracted much attention due to their anti-inflammatory, antioxidant, and gut homeostasis promoting effects. However, food matrix interaction, poor solubility, and strong digestion and metabolism of polyphenols cause barriers to their absorption in the gastrointestinal tract, which further reduces bioavailability and limits polyphenols' application in the food industry. Nano-delivery systems composed of biocompatible macromolecules (polysaccharides, proteins and lipids) are an effective way to improve the bioavailability of polyphenols.

View Article and Find Full Text PDF

Spinning a Sustainable Future: Electrospun Polysaccharide-Protein Fibers for Plant-Based Meat Innovation.

Foods

September 2024

Department of Chemical Engineering, Universidade Federal de São Paulo (UNIFESP), Diadema 09913-030, Brazil.

This study aims to evaluate the feasibility of producing electrospun fibers by combining polysaccharides, zein, and poly(ethylene oxide) (PEO) to simulate the fibers applied in plant-based meat analogs. The rheological properties of biopolymer solutions were evaluated, and the electrospun fibers were characterized according to their morphology, structural interactions, and thermal analysis. The results indicated that the fibers prepared in a ratio of 90:10 of zein/carrageenan from the mixture of a solution containing 23 wt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!