Structure, dimeric conformation, and coenzyme versatility of p-hydroxybenzoate hydroxylase from Arthrobacter sp. PAMC25564.

Int J Biol Macromol

Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea; Genome-based BioIT Convergence Institute, Asan 31460, Republic of Korea; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea. Electronic address:

Published: August 2024

p-Hydroxybenzoate hydroxylase (PHBH) catalyzes the ortho-hydroxylation of 4-hydroxybenzoate (4-HB) to protocatechuate (PCA). PHBHs are commonly known as homodimers, and the prediction of pyridine nucleotide binding and specificity remains an ongoing focus in this field. Therefore, our study aimed to determine the dimerization interface in AspPHBH from Arthrobacter sp. PAMC25564 and identify the canonical pyridine nucleotide-binding residues, along with coenzyme specificity, through site-directed mutagenesis. The results confirm a functional dimeric assembly from a tetramer that appeared in the crystallographic asymmetric unit identical to that established in previous studies. Furthermore, AspPHBH exhibits coenzyme versatility, utilizing both NADH and NADPH, with a preference for NADH. Rational engineering experiments demonstrated that targeted mutations in coenzyme surrounding residues profoundly impact NADPH binding, leading to nearly abrogated enzymatic activity compared to that of NADH. R50, R273, and S166 emerged as significant residues for NAD(P)H binding, having a near-fatal impact on NADPH binding compared to NADH. Likewise, the E44 residue plays a critical role in determining coenzyme specificity. Overall, our findings contribute to the fundamental understanding of the determinants of PHBH's active dimeric conformation, coenzyme binding and specificity holding promise for biotechnological advancements.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.133268DOI Listing

Publication Analysis

Top Keywords

nadph binding
12
dimeric conformation
8
conformation coenzyme
8
coenzyme versatility
8
p-hydroxybenzoate hydroxylase
8
arthrobacter pamc25564
8
binding specificity
8
coenzyme specificity
8
impact nadph
8
compared nadh
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!