Changes in the properties of the corn starch glycerol film in a time-dependent manner during gelatinization.

Food Chem

Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey. Electronic address:

Published: November 2024

This study aimed to investigate the fundamental properties, solubility, mechanical properties, barrier performance, and microstructural features of films composed of corn starch and glycerol. Changes in the microstructure were analyzed to understand how they relate to the physical and chemical properties of these films. Specifically, we found that increasing the gelatinization time decreased the film thickness, solubility, water vapor permeability, and maximum degradation temperature and increased the water content. A gradual increase in the water contact angle of the corn starch-glycerol films was observed with increasing gelatinization time. This trend is likely due to the disruptive effect of gelatinization on the crystalline and amorphous structures inherent in corn starch, resulting in reduced film crystallinity, degree of order (DO) and degree of double helix (DD).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.140183DOI Listing

Publication Analysis

Top Keywords

corn starch
12
starch glycerol
8
increasing gelatinization
8
gelatinization time
8
changes properties
4
corn
4
properties corn
4
glycerol film
4
film time-dependent
4
time-dependent manner
4

Similar Publications

Synthesis, characterization, anticancer, antibacterial and antifungal activities of nanocomposite based on tertiary metal oxide FeO@CuO@ZnONPs, starch, ethylcellulose and collagen.

Int J Biol Macromol

January 2025

Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Electronic address:

This study aimed to synthesize a nanocomposite based on tertiary metal oxide FeO@CuO@ZnONPs, starch, ethylcellulose, and collagen, as well as evaluate its biological activities. The prepared nanocomposites were characterized using physicochemical analysis, which included FTIR, XRD, and DLS. Additionally, topographical analysis using FI-SEM, EDX, mapping, HR-TEM, and SAED affirmed the molecular structure and nanosized of formulated nanocomposites.

View Article and Find Full Text PDF

Soluble starch nanoparticles loaded with Gefitinib for treating lung cancer: Optimization and cytotoxicity assessment.

Int J Biol Macromol

January 2025

Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia. Electronic address:

Lung cancer (LC) represents a catastrophically huge problem and it is a worldwide issue that has to be resolved. There is a declining confidence in classic cancer treatments as they lack selectivity, spur widespread harm, and exacerbate the suffering of LC patients. The poor solubility and extensive cell damage of Gefitinib limit its use in treating LC.

View Article and Find Full Text PDF

Type 1 resistant starch (RS1) was prepared by high-pressure homogenization of corn starch (CS) embedded with 0.1 %, 0.3 %, 0.

View Article and Find Full Text PDF

Development of multifunctional PAA-alginate-carboxymethyl cellulose hydrogel-loaded fiber-reinforced biomimetic scaffolds for controlled release of curcumin.

Int J Biol Macromol

January 2025

MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Center for Next-Generation Sensor Research and Development, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea. Electronic address:

Critical-sized bone defects in osteosarcoma treatment demand multifunctional scaffolds that must effectively integrate two key functions, promoting osteogenesis and delivering targeted chemoprevention. This study introduces a dual-component system featuring pH-responsive hydrogels and hydroxyapatite-based fiber-reinforced biomimetic scaffolds designed for controlled and localized curcumin delivery, while addressing its solubility and stability issues. The hydrogel system comprises a double network of polyacrylic acid, sodium alginate, carboxymethyl cellulose, and potato starch, specifically modified to encapsulate curcumin.

View Article and Find Full Text PDF

Amino acid transporter OsATL13 coordinately regulates rice yield and quality by transporting phenylalanine and methionine.

Plant Sci

January 2025

Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China. Electronic address:

Amino acids are crucial nutrients for growth in crops. In this study, we found an amino acid transporter-like 13 (OsATL13), that coordinately determined rice yield and quality. OsATL13 was primarily expressed in the root and panicle, its protein was localized on plasma membrane, and it principally transported phenylalanine and methionine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!