A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of the volatile flavor profiles of black garlic using nanomaterial-based colorimetric sensor array, HS-SPME-GC/MS coupled with chemometrics strategies. | LitMetric

AI Article Synopsis

  • * Researchers developed a multi-channel nanocomposite structure using metal-organic frameworks to identify key volatile organic compounds (VOCs) and found that garlic samples could be categorized into five distinct clusters linked to VOCs.
  • * An artificial neural network (ANN) model proved more effective than other techniques for distinguishing processing stages, while a support vector regression (SVR) model showed a strong prediction ability for odor quality, indicating a promising method for flavor analysis in food products.

Article Abstract

This work investigated the feasibility of applying headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC/MS) combining olfactory visualization for flavor characterization of black garlic. Volatile organic compounds (VOCs) analysis was performed to select important differential VOCs during black garlic processing. A multi-channels nanocomposite CSA assembled with two porous metal-organic frameworks was then developed to characterize flavor profiles changes during black garlic processing, and garlic samples during processing could be divided into five clusters, consistent with VOCs analysis. Artificial neural network (ANN) model outperformed other pattern recognition methods in discriminating processing stages. Furthermore, SVR model for odor sensory scores with the correlation coefficient for prediction set of 0.8919 exhibited a better performance than PLS model, indicating a preferable prediction ability for odor quality. This work demonstrated that the nanocomposite CSA combining appropriate chemometrics can offer an effective tool for objectively and rapidly characterizing flavor quality of black garlic or other food matrixes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.140213DOI Listing

Publication Analysis

Top Keywords

black garlic
20
flavor profiles
8
vocs analysis
8
garlic processing
8
nanocomposite csa
8
garlic
6
black
5
characterization volatile
4
flavor
4
volatile flavor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!