Gold nanoclusters cure implant infections by targeting biofilm.

J Colloid Interface Sci

Cancer Research Center, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, PR China; The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, PR China. Electronic address:

Published: November 2024

The biofilm-mediated implant infections pose a huge threat to human health. It is urgent to explore strategies to reverse this situation. Herein, we design 3-amino-1,2,4-triazole-5-thiol (ATT)-modified gold nanoclusters (AGNCs) to realize biofilm-targeting and near-infrared (NIR)-II light-responsive antibiofilm therapy. The AGNCs can interact with the bacterial extracellular DNA through the formation of hydrogen bonds between the amine groups on the ATT and the hydroxyl groups on the DNA. The AGNCs show photothermal properties even at a low power density (0.5 W/cm) for a short-time (5 min) irradiation, making them highly effective in eradicating the biofilm with a dispersion rate up to 90 %. In vivo infected catheter implantation model demonstrates an exceptional high ability of the AGNCs to eradicate approximately 90 % of the bacteria encased within the biofilms. Moreover, the AGNCs show no detectable toxicity or systemic effects in mice. Our study suggests the great potential of the AGNCs for long-term prevention and elimination of the biofilm-mediated infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.06.172DOI Listing

Publication Analysis

Top Keywords

gold nanoclusters
8
implant infections
8
agncs
6
nanoclusters cure
4
cure implant
4
infections targeting
4
targeting biofilm
4
biofilm biofilm-mediated
4
biofilm-mediated implant
4
infections pose
4

Similar Publications

Tungsten disulphide nanosheet modulated fluorescent gold nanocluster immunoprobe for the detection of tau peptide: Alzheimer's disease biomarker.

Anal Methods

January 2025

Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.

The neuronal tau peptide serves as a key biomarker for neurodegenerative diseases, specifically, Alzheimer's disease, a condition that currently has no cure or definitive diagnosis. The methodology to noninvasively detect tau levels from body fluids remains a major hurdle for a rapid and simple diagnostic approach. Thus, developing new detection methods for sensing tau protein levels is crucial.

View Article and Find Full Text PDF

Gold-based (Au) nanostructures are efficient catalysts for CO oxidation, hydrogen evolution (HER), and oxygen evolution (OER) reactions, but stabilizing them on graphene (Gr) is challenging due to weak affinity from delocalized [Formula: see text] carbon orbitals. This study investigates forming metal alloys to enhance stability and catalytic performance of Au-based nanocatalysts. Using ab initio density functional theory, we characterize [Formula: see text] sub-nanoclusters (M = Ni, Pd, Pt, Cu, and Ag) with atomicities [Formula: see text], both in gas-phase and supported on Gr.

View Article and Find Full Text PDF

Au nanoclusters often demonstrate useful optical properties such as visible/near-infrared photoluminescence in addition to remarkable thermodynamic stability owing to their superatomic behavior. The smallest of the 8e- superatomic Au nanoclusters, Au11, has limited applications due to its lack of luminescence and relatively low stability. In this work, we investigate the introduction of a single Pt dopant to the center of a halide- and triphenylphosphine-ligated Au11 nanocluster, obtaining a cluster with a proposed molecular formula PtAu10(PPh3)7Br3.

View Article and Find Full Text PDF

Lanthanide-Assisted Function Tailoring of the HOF-Based Logic Gate Sensor Array for Biothiol Detection and Disease Discrimination.

Anal Chem

January 2025

Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.

The advancement of lanthanide fingerprint sensors characterized by targeted emission responses and low self-fluorescence interference for the detection of biothiols is of considerable importance for the early diagnosis and treatment of cancer. Herein, the lanthanide "personality function tailoring" HOF composite sensor array is designed for the specific discrimination of biothiols (GSH, Cys, and Hcy) based on the activation of various luminescent molecules, such as r-AuNCs/luminol via HOF surface proximity. Lumi-HOF@Ce serves as a versatile platform for catalyzing the oxidation of -phenylenediamine (OPD) to generate yellow fluorescent oligomers, accompanied by the fluorescence attenuation of luminol.

View Article and Find Full Text PDF

Ligand engineering boosts catalase-like activity of gold nanoclusters for cascade reactions combined with glucose oxidase in ZIF-8 matrix.

Anal Chim Acta

February 2025

Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China. Electronic address:

Background: Integrating natural enzymes and nanomaterials exhibiting tailored enzyme-like activities is an effective strategy for the application of cascade reactions. It is essential to develop a highly efficient and robust glucose oxidase-catalase (GOx-CAT) cascade system featuring controllable enzyme activity, a reliable supply of oxygen, and improved stability for glucose depletion in cancer starvation therapy. However, the ambiguous relationship between structure and performance, and the difficulty in controlling enzyme-mimic activity, significantly hinder their broader application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!