Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Developing new low modulus structures is important for reducing the risk of aseptic loosening during loading of implant materials. However, an alloy that may also confer some advantage at preventing septic loosening could dramatically improve the outcomes for patients. Nevertheless, the predictive power of current models remains limited to common alloying additions. As such, this study considers the mechanical properties of a range of Ti-Nb-Au superelastic alloys to elucidate the composition range for which low modulus structures can be achieved. These modulus values are compared to other critical design parameters such as strain recovery and strength. It was found that Au additions are effective at suppressing the formation of the ω phase and allow alloys with lower moduli to be achieved. It was also shown that low β phase stability is critical for achieving the lowest modulus, and that this susceptibility to transform to a martensite may enable higher strengths to be achieved. However, this low β phase stability also limits the strain recovery that may be achieved meaning these two properties are not necessarily independently tuneable. These data provide important context for the design of new systems containing unusual alloying additions such as Au.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2024.106633 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!