Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plrev.2024.06.011 | DOI Listing |
ACS Nano
January 2025
Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.
High-entropy metal oxides (HEOs) have recently received growing attention for broad energy conversion and storage applications due to their tunable properties. HEOs typically involve the combination of multiple metal cations in a single oxide lattice, thus bringing distinctive structures, controllable elemental composition, and tunable functional properties. Many synthesis methods for HEOs have been reported, such as solid-state reactions and carbon thermal shock methods.
View Article and Find Full Text PDFAcc Mater Res
January 2025
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, United States.
Increasing demand for high-purity fine chemicals and a drive for process intensification of large-scale separations have driven significant work on the development of highly engineered porous materials with promise for sorption-based separations. While sorptive separations in porous materials offer energy-efficient alternatives to longstanding thermal-based methods, the particulate nature of many of these sorbents has sometimes limited their large-scale deployment in high-throughput applications such as gas separations, for which the necessary high feed flow rates and gas velocities accrue prohibitive operational costs. These processability limitations have been historically addressed through powder shaping methods aimed at the fabrication of structured sorbent contactors based on pellets, beads or monoliths, commonly obtained as extrudates.
View Article and Find Full Text PDFSci Rep
January 2025
School of Safety Science and Engineering (School of Emergency Management), Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
Powder-based fire extinguishing agents have become a kind of promising substitutes for halon extinguishing agents in civil aircrafts. However, their storage lifespan, significantly influenced by the thermal aging, emerges as a crucial yet overlooked aspect for aviation use. This study investigates the effects of thermal aging cycles on various parameters of ordinary dry powder extinguishing agent (ODPEA) and novel superhydrophobic and oleophobic ultra-fine dry powder extinguishing agent (SHOU DPEA), including surface microscopic morphology, D90 (the diameter at which 90% of the cumulative volume of particles are equal to or smaller than this value), chemical structure, hydrophobic and oleophobic angles, flowability, extinguishing time and effectiveness.
View Article and Find Full Text PDFSci Rep
January 2025
Shandong Key Laboratory of Mining Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao, 266590, China.
Owing to the differences in sedimentary environments in the mining areas of western China, the mechanical properties of rocks in this region are significantly different from those in the central and eastern regions. Therefore, uniaxial cyclic loading-unloading tests were conducted on fine sandstone found in many roof rocks to study the evolution laws of mechanical properties, deformation characteristics, acoustic emission (AE) parameters, and energy under cyclic loading and unloading conditions. The accumulated residual strain, dissipative energy, acoustic emission cumulative ringing counts, and cumulative energy were introduced to characterize the degree of rock damage.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
Colloidal nanocrystals inherently undergo structural changes during chemical reactions. The robust structure-property relationships, originating from their nanoscale dimensions, underscore the significance of comprehending the dynamic structural behavior of nanocrystals in reactive chemical media. Moreover, the complexity and heterogeneity inherent in their atomic structures require tracking of structural transitions in individual nanocrystals at three-dimensional (3D) atomic resolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!