Meat is highly susceptible to contamination with harmful microorganisms throughout the production, processing, and storage chain, posing a significant public health risk. Traditional decontamination methods like chemical sanitizers and heat treatments often compromise meat quality, generate harmful residues, and require high energy inputs. This necessitates the exploration of alternative non-ionizing technologies for ensuring meat safety and quality. This review provides a comprehensive analysis of the latest advancements, limitations, and future prospects of non-ionizing technologies for meat decontamination, with a specific focus on ultrasonication. It further investigates the comparative advantages and disadvantages of ultrasonication against other prominent non-ionizing technologies such as microwaves, ultraviolet (UV) light, and pulsed light. Additionally, it explores the potential of integrating these technologies within a multi-hurdle strategy to achieve enhanced decontamination across the meat surface and within the matrix. While non-ionizing technologies have demonstrated promising results in reducing microbial populations while preserving meat quality attributes, challenges remain. These include optimizing processing parameters, addressing regulatory considerations, and ensuring cost-effectiveness for large-scale adoption. Combining these technologies with other methods like antimicrobial agents, packaging, and hurdle technology holds promise for further enhancing pathogen elimination while safeguarding meat quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261440 | PMC |
http://dx.doi.org/10.1016/j.ultsonch.2024.106962 | DOI Listing |
Eur Radiol
January 2025
Department of Information Technology, Uppsala University, 75237, Uppsala, Sweden.
Objectives: The aim is to assess the feasibility and accuracy of a novel quantitative ultrasound (US) method based on global speed-of-sound (g-SoS) measurement using conventional US machines, for breast density assessment in comparison to mammographic ACR (m-ACR) categories.
Materials And Methods: In a prospective study, g-SoS was assessed in the upper-outer breast quadrant of 100 women, with 92 of them also having m-ACR assessed by two radiologists across the entire breast. For g-SoS, ultrasonic waves were transmitted from varying transducer locations and the image misalignments between these were then related analytically to breast SoS.
J Biomed Phys Eng
December 2024
Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: Coronary heart disease the most prevalent form of cardiovascular disease, results from the blockage of blood flow through arteries. The Myocardial Perfusion Scan (MPS) is considered a non-invasive method to assess the heart condition and provides valuable information, such as End Diastolic Volume (EDV), End Systolic Volume (ESV), Ejection Fraction (EF), Lung to Heart Ratio (LHR), and Transient Ischemic Dilatation (TID).
Objective: This study aimed to investigate changes in gated heart scan parameters to diagnose patients, who are candidates for heart surgery.
Magn Reson Med
December 2024
Center for Image Sciences, High Field MR Research Group, Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands.
Purpose: To implement a low-rank and subspace model-based reconstruction for 3D deuterium metabolic imaging (DMI) and compare its performance against Fourier transform-based (FFT) reconstruction in terms of spectral fitting reliability.
Methods: Both reconstruction methods were applied on simulated and experimental DMI data. Numerical simulations were performed to evaluate the effect of increasing acceleration factors.
Environ Res
December 2024
Swiss Tropical and Public Health Institute (Swiss TPH), 4123, Allschwil, Switzerland; University of Basel, 4001, Basel, Switzerland. Electronic address:
The advancement of cellular networks requires updating measurement protocols to better study radiofrequency electromagnetic field (RF-EMF) exposure emitted from devices and base stations. This paper aims to present a novel activity-based microenvironmental survey protocol to measure environmental, auto-induced downlink (DL), and uplink (UL) RF-EMF exposure in the era of 5G. We present results when applying the protocol in Switzerland.
View Article and Find Full Text PDFSurg Neurol Int
November 2024
Independent Researcher, Ronchin, France.
Background: Scientific literature, with no conflicts of interest, shows that even below the limits defined by the International Commission on Non-Ionizing Radiation Protection, microwaves from telecommunication technologies cause numerous health effects: neurological, oxidative stress, carcinogenicity, deoxyribonucleic acid and immune system damage, electro-hypersensitivity. The majority of these biological effects of non-thermal microwave radiation have been known since the 1970s.
Methods: Detailed scientific, political, and military documents were analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!