A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Follicular fluid-derived exosomal HMOX1 promotes granulosa cell ferroptosis involved in follicular atresia in geese (Anser cygnoides). | LitMetric

Follicular fluid-derived exosomal HMOX1 promotes granulosa cell ferroptosis involved in follicular atresia in geese (Anser cygnoides).

Poult Sci

Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China. Electronic address:

Published: August 2024

The proliferation and death of granulosa cells (GCs) in poultry play a decisive role in follicular fate and egg production. The follicular fluid (FF) contains a variety of nutrients and genetic substances to ensure the communication between follicular cells. Exosomes, as a new intercellular communication, could carry and transport the proteins, RNA, and lipids to react on GCs, which had been found in FF of various domestic animals. Whether exosomes of FF in poultry play a similar role is unclear. In this study, geese, a poultry with low egg production, were chosen, and the effect of FF exosomes on the proliferation and death of GCs was investigated. Firstly, there were not only a large number of healthy small yellow follicles (HSYFs) but also some atresia small yellow follicles (ASYFs) in the egg-laying stage. Also, the GC layers of ASYFs became loose interconnections, inward detachment, and diminished survival rate than that of HSYFs. Besides, compared to HSYFs, the contents of E2, P4, and the mRNA expression levels of ferroptosis-related genes GPX4, FPN1, and FTH1 were significantly decreased, while COX2, NCOA4, VDAC3 mRNA were significantly increased, and the structure of mitochondrial cristae disappeared and the outer membrane broke in the GC layers of ASYFs. Moreover, the ROS, MDA, and oxidation levels in the GC layers of ASYFs were significantly higher than those of HSYFs. All these hinted that ferroptosis might result in a large number of GCs death and involvement in follicle atresia. Secondly, FF exosomes were isolated from HSYFs and ASYFs, respectively, and identified by TEM, NTA, and detection of exosome marker proteins. Also, we found the exosomes were phagocytic by GCs by tracking CM-Dil. Moreover, the addition of ASYF-FF exosomes significantly elevated the MDA content, Fe levels, and the mitochondrial membrane potential (MMP) in GCs, thus significantly inhibiting the proliferation of GCs, which was restored by the ferroptosis inhibitor ferrostatin-1. Thirdly, the proteomic sequencing was performed between FF-derived exosomes of HSYFs and ASYFs. We obtained 1615 differentially expressed proteins, which were mainly enriched in the protein transport and ferroptosis pathways. Among them, HMOX1 was enriched in the ferroptosis pathway based on differential protein-protein interaction network analysis. Finally, the role of HMOX1 in regulating ferroptosis in GCs was further explored. The highly expressed HMOX1 was observed in the exosomes of ASYF-FF than that in HSYF-FF. Overexpression of HMOX1 increased ATG5, LC3II, and NCOA4 expression and reduced the expression of FTH1, GPX4, PCBP2, FPN1 in the ferroptosis pathway, also promoted intracellular Fe accumulation and MDA surge, which drove ferroptosis in GCs. The effects of HMOX1 on ferroptosis could be blocked by its inhibitor Znpp. Taken together, the important protein HMOX1 was identified in FF, which could be delivered to GCs via exosomes, triggering ferroptosis and thus determining the fate of follicles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261456PMC
http://dx.doi.org/10.1016/j.psj.2024.103912DOI Listing

Publication Analysis

Top Keywords

layers asyfs
12
ferroptosis
10
gcs
10
exosomes
9
proliferation death
8
poultry play
8
egg production
8
large number
8
small yellow
8
yellow follicles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!