A novel coumarin-based fluorescent sensor CHE, incorporating 2-hydrazinylbenzothiazole and coumarin aldehyde, has been developed that demonstrated a preferential detection of Hg and Ag in presence of interferences. Compared to previously prevalent intensity-based fluorescent probes, CHE exhibited a ratiometric fluorescence response to Hg and Ag, and further accurately differentiated Hg and Ag using the differential extractive ability of EDTA when interacting with ion-CHE complexes. Sensing mechanism was investigated and elucidated. The chemosensor CHE was successfully applied to detect Hg and Ag in six distinct samples with satisfactory results. Additionally, combinatorial logic circuits were constructed utilizing three distinct logic gates (NOT, OR, and INH) based on the sensor's differential output signals in response to Hg/Ag and other cations. Interestingly, utilizing the reversible and reproducible switching behavior of the EDTA interaction with Hg, a conceptual 'Write-Read-Erase-Read' memory function with multi-write capability was proposed, offering a novel perspective for molecular-based memory systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.126478 | DOI Listing |
Redox Biol
January 2025
School of Molecular Biosciences, University of Glasgow, G12 8QQ, UK. Electronic address:
Mitochondria are major sites of reactive oxygen species (ROS) production within cells. ROS are important signalling molecules, but excessive production can cause cellular damage and dysfunction. It is therefore crucial to accurately determine when, how and where ROS are produced within mitochondria.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Department of Pharmacy, Division of Research and Innovation, Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India.
Background: The increasing prevalence of drug-resistant bacterial infections poses a significant challenge to global healthcare, necessitating the development of novel antibacterial agents. Coumarin-based derivatives are well-recognized for their diverse biological activities, and hybridization with other pharmacophores offers a promising strategy for enhancing therapeutic efficacy and overcoming resistance.
Objective: This study aimed to synthesize and evaluate a novel series of coumarin hybrids by integrating the coumarin scaffold with sulfanilamide (9a-e) and 2-aminobenzothiazole (10a-e), targeting bacterial pathogens through a dual pharmacophoric approach.
J Fluoresc
January 2025
College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan, 756000, People's Republic of China.
A novel coumarin-based fluorescent probe LY was designed and synthesized in this work. LY could selectively recognize Cu via fluorescence quenching at 522 nm in a DMSO/HO solution. The recognition process experienced minimal interference from other common cations.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States. Electronic address:
Amino acids play important roles in human pathology and physiology and the qualitative and quantitative determination of chiral amino acids in humans and mammals also has important impacts on the life sciences. Therefore, the introduction of artificial probes to assess the concentrations and enantiomeric compositions [ee = ([D] - [L])/([D] + [L])] of amino acids in aqueous solution is necessary in understanding certain biological processes and diagnosing and treating diseases. Herein, a bifunctional achiral coumarin probe (Br-Coumarin) is reported to determine the absolute configuration, ee value, and concentration of 16 amino acids in THF/HO = 1/4 solution at micromolar concentrations.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
Multi-target-directed ligands (MTDLs) represent a promising frontier in tackling the complexity of multifactorial pathologies like Alzheimer's disease (AD). The synergistic inhibition of MAO-B, MAO-A, and AChE is believed to enhance treatment efficacy. A novel coumarin-based molecule substituted with -phenylpiperazine via three- and four-carbon linkers at the 5- and 7-positions, has been identified as an effective MTDL against AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!