The present study explores the kitchen waste okra peels derived synthesis of nitrogen doped carbon dots (N-CDs) via simple carbonization followed by reflux method. The synthesized N-CDs was characterized using, TEM, XPS, FTIR, XRD, Raman, UV-Visible and Fluorescence Spectroscopy. The N-CDs emits bright blue emission at 420 nm with 12 % of quantum yield as well as it follows excitation dependent emission. Further, the N-CDs were employed as a fluorescence sensor for detection of hazardous metal ions and nitro compounds. Among various metal ions and nitro compounds, the N-CDs shows fluorescence quenching response towards Cr, and Mn metal ions as well as 4-nitroaniline (4-NA) and picric acid (PA) with significant hypsochromic and bathochromic shift for Mn, 4-NA and PA respectively. The developed fluorescent probe shows relatively low limit of detection (LOD) of 1.46 µg/mL, 1.05 µg/mL, 2.1 µg/mL and 2.2 µg/mL for the above analytes respectively. The N-CDs did not show any significant interference with coexisting ions and successfully applied for real water sample analysis. In addition, circular economy approach was employed for adsorption of dyes by reactivating leftover waste carbon residue which was obtained after reflux. Thus, the kitchen waste valorization and circular economy approach based N-CDs have potential applications in the field of detection of emerging pollutants, and environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.124659DOI Listing

Publication Analysis

Top Keywords

metal ions
12
carbon dots
8
environmental remediation
8
kitchen waste
8
ions nitro
8
nitro compounds
8
circular economy
8
economy approach
8
n-cds
7
okra peel-derived
4

Similar Publications

Modulation of Zn Ion Toxicity in L. by Phycoremediation.

Plants (Basel)

January 2025

Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria.

Microalgae offer a promising alternative for heavy metal removal, and the search for highly efficient strains is ongoing. This study investigated the potential of two microalgae, sp. BGV (Chlorophyta) and Schwabe & Simonsen (Cyanoprokaryota), to bind zinc ions (Zn⁺) and protect higher plants.

View Article and Find Full Text PDF

Industrial wastewater containing heavy metal ions presents serious economic risk to the environment. In this study, a novel compound of aminated cellulose with jeffamine EDR148 was prepared to improve cellulose's adsorptive behavior towards metal ions. This study undertook a straightforward and efficient cellulose modification through homogeneous chlorination in N,N'-butylmethylimidazolium chloride to produce 6-deoxychlorocellulose (Cell-Cl), followed by a reaction with jeffamine EDR148 and ultimately resulting in the formation of aminated cellulose (Cell-Jef148).

View Article and Find Full Text PDF

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel)

January 2025

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.

View Article and Find Full Text PDF

Mechanisms of Copper-Induced Autophagy and Links with Human Diseases.

Pharmaceuticals (Basel)

January 2025

School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.

As a structural and catalytic cofactor, copper is involved in many biological pathways and is required for the biochemistry of all living organisms. However, excess intracellular copper can induce cell death due to its potential to catalyze the generation of reactive oxygen species, thus copper homeostasis is strictly regulated. And the deficiency or accumulation of intracellular copper is connected with various pathological conditions.

View Article and Find Full Text PDF

Spontaneous cleavage reactions normally occur in vivo on amino acid peptide backbones, leading to fragmentation products that can have different physiological roles and toxicity, particularly when the substrate of the hydrolytic processes are neuronal peptides and proteins highly related to neurodegeneration. We report a hydrolytic study performed with the HPLC-MS technique at different temperatures (4 °C and 37 °C) on peptide fragments of different neuronal proteins (amyloid-β, tau, and α-synuclein) in physiological conditions in the presence of Cu and Zn ions, two metal ions found at millimolar concentrations in amyloid plaques. The coordination of these metal ions with these peptides significantly protects their backbones toward hydrolytic degradation, preserving the entire sequences over two weeks in solution, while the free peptides in the same buffer are fully fragmented after the same or even shorter incubation period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!