A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of carbazolyl and diphenylamino substituents bearing methoxy groups on the performance of hole-transporting materials in OLEDs. | LitMetric

Newly designed and synthesized derivatives of pentaphenylbenzene with methoxy-substituted carbazolyl or diphenylamino moieties were investigated to estimate their applicability as hole transport materials. Both the compounds exhibit high thermal stability. The intramolecular charge transfer is blocked for the film of the compound containing diphenylamino groups. The intermolecular charge transfer is induced in the film of carbazolyl-containing compound. The derivative of pentaphenylbenzene and diphenylamine exhibits higher hole drift mobility (2.4·10 cm/V·s at the electric field of 5.5·10 V/cm) and by 0.1 eV lower ionization potential than the carbazolyl-containing compound. Both the compounds were utilized as hole-transporting materials in a series of organic light emitting diodes (OLEDs) based on of thermally activated delayed fluorescence. With the maximum values of external quantum efficiency of 25.9 % and power efficiency of 43.4 lm/W, OLEDs containing the layers of the synthesized compounds outperformed the device based on TCTA by 4 %, without the change in spectral properties. Variable angle spectroscopic ellipsometry revealed the moderate average roughness of the films of the compound deposited by the thermal vacuum evaporation technique with an arithmetic mean deviation of not more than 0.8 nm. The prominent hole transport characteristics of the compounds make them good candidates for utilization in optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.124713DOI Listing

Publication Analysis

Top Keywords

carbazolyl diphenylamino
8
hole-transporting materials
8
hole transport
8
charge transfer
8
carbazolyl-containing compound
8
effects carbazolyl
4
diphenylamino substituents
4
substituents bearing
4
bearing methoxy
4
methoxy groups
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!