Facile synthesis of eco-friendly alginate-chitosan bio-adsorbent for critical raw materials adsorption: A comprehensive study.

J Environ Manage

Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031, Lublin, Poland.

Published: August 2024

Sustainable management of critical raw materials is of paramount importance to ensure a steady supply and reduce environmental impact. The application of newly synthesized and environmentally friendly ALG@CS material as a bio-adsorbent for the effective rare earth elements removal from aqueous solution has been presented. The synthesized material underwent FTIR, XPS, EDX, and SEM analysis to determine its suitability for metal uptake. To evaluate the adsorption capacity of ALG@CS for rare earth elements several factors were taken into consideration. These factors included alginate:chitosan ratios, bead size, pH level, composite mass, interaction time, metal ion concentration, and temperature, being all varied during the batch mode evaluation process. Under the optimal conditions, the maximum adsorption capacities were found to be 145.90 mg La(III)/g, 168.44 mg Ce(III)/g, 132.51 mg Pr(III)/g, 128.40 mg Nd(III)/g, 154.36 mg Sm(III)/g, and 165.10 mg Ho(III)/g. The equilibrium data fits well with non-linear three-parameter Sips and Redlich-Peterson isotherm models. The PSO model finds the highest process suitability. The synthesized ALG@CS bio-adsorbent showed excellent regenerative capacity in ten cycles, making it a suitable adsorbent for rare earth elements uptake. The unique bio-adsorbents combination allows for efficient critical raw materials adsorption providing a promising solution for their recovery and recycling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.121609DOI Listing

Publication Analysis

Top Keywords

critical raw
12
raw materials
12
rare earth
12
earth elements
12
materials adsorption
8
facile synthesis
4
synthesis eco-friendly
4
eco-friendly alginate-chitosan
4
alginate-chitosan bio-adsorbent
4
bio-adsorbent critical
4

Similar Publications

Detection and characterization of pathogenic Bacillus haynesii from Tribulus terrestris extract: ways to reduce its levels.

Braz J Microbiol

January 2025

Innovation and Drug Discovery, Sava Healthcare Limited, Research Center, MIDC, Block D1, Plot No. 17/6, Chinchwad, Pune, 411019, India.

Plant parts such as roots, bark, leaves, flowers, and fruits that hold ethnopharmacological significance are naturally prone to microbial contamination, influenced by environmental factors like moisture and humidity. This study focuses on assessing the microbial load in the raw material of Tribulus terrestris (TT). The primary bacterium isolated from the pulverized raw material was identified as Bacillus haynesii through 16S rRNA sequencing.

View Article and Find Full Text PDF

With the global surge in lithium-ion batteries (LIBs), recycling spent LIBs has become an essential and urgent research area. In the context of global efforts to promote sustainable development, and achieve energy conservation and emission reduction, advancing recycling technologies that efficiently recover critical metals like Ni, Co, Mn, and Li is crucial. Herein, a novel and environmentally friendly simplified process for selectively extracting critical metals from the mixed electrode materials of spent LIBs is proposed for the first time.

View Article and Find Full Text PDF

Severe environmental contamination can result from high concentrations of iron ions, which can have a detrimental impact on human health and well-being. Consequently, it is imperative to develop novel materials that can address environmental issues. Metal-organic frameworks (MOFs) possess unique properties that render them efficient fluorescent probes for the rapid and precise detection of these pollutants.

View Article and Find Full Text PDF

SwarmMAP: Swarm Learning for Decentralized Cell Type Annotation in Single Cell Sequencing Data.

bioRxiv

January 2025

Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Fetscherstraße 74, Dresden, 01307, Saxony, Germany.

Rapid technological advancements have made it possible to generate single-cell data at a large scale. Several laboratories around the world can now generate single-cell transcriptomic data from different tissues. Unsupervised clustering, followed by annotation of the cell type of the identified clusters, is a crucial step in single-cell analyses.

View Article and Find Full Text PDF

Monitoring of genotoxic chemicals released into the water cycle or formed through transformation processes is critical to prevent harm to human health. The development of the high-performance thin-layer chromatography (HPTLC)-umu bioassay combines sample separation and detection of genotoxic substances in the low ng/L concentration range. In this study, raw, process, and drinking water samples from 11 different waterworks in Germany were analyzed using the HPTLC-umu.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!