A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Paeonol ameliorates hyperlipidemia and autophagy in mice by regulating Nrf2 and AMPK/mTOR pathways. | LitMetric

Background: Hyperlipidemia, inadequate diet, and excessive medication increase the risk of cardiovascular disease. Paeonl (Pae), a phenolic compound found in Peony and Angelica dahurica, can alleviate lipid metabolism disorders and lipotoxicity. However, the molecular mechanism of Pae alleviating hyperlipidemia remains unclear and needs to be further explored.

Purpose: In this study, we explored whether Pae can prevent hyperlipidemia and investigated the molecular mechanisms.

Methods: The effects of Pae (30, 45, 60mg·kg) on hyperlipidemia in Tyloapol-induced WT mice and Nrf2 knockout mice (Pae: 60mg·kg) were detected by oil red O staining, HE staining, TG, TC and other indexes. The expression levels of proinflammatory mediators, key lipid proteins and autophagy signaling pathway proteins were analyzed by enzyme-linked immunosorbent assay, western blot and immunofluorescence. The molecular mechanism of Pae alleviating hyperlipidemia was explored through molecular docking technique and in vivo and in vitro experiments.

Results: Several studies indicated that Pae effectively improved tyloxapol (Ty)-induced lipid metabolism disorder, as evidenced by decreased triglyceride content, increased carnitine palmitoyltransferase 1 (CPT1), and Sirtuin 1 (Sirt1) protein expression. In addition, Pae ameliorated hyperlipidemia by activating the AMPK/ACC and PI3K/mTOR pathways. Interestingly, the therapeutic effect of Pae on hyperlipidemia was markedly reduced in Nrf2 mice. Molecular docking results indicated that Pae and Nrf2 exhibited good binding ability, suggesting that Nrf2 is a core target mediating the effects of Pae in the treatment of hyperlipidemia. Taken together, Pae alleviated hyperlipidemia in vivo and ameliorated lipid accumulation in vitro by activating AMPK/ACC and PI3K/mTOR signaling pathways via Nrf2 binding.

Conclusion: Our data suggest that paeonol can ameliorate hyperlipidemia and autophagy in mice by regulating Nrf2 and AMPK/mTOR pathways, and it has potential therapeutic value in the occurrence and development of hyperlipidemia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2024.155839DOI Listing

Publication Analysis

Top Keywords

hyperlipidemia
12
pae
12
hyperlipidemia autophagy
8
autophagy mice
8
mice regulating
8
regulating nrf2
8
nrf2 ampk/mtor
8
ampk/mtor pathways
8
lipid metabolism
8
molecular mechanism
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!