Identification of anther thermotolerance genes by the integration of linkage and association analysis in maize.

Plant J

National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China.

Published: August 2024

Maize is one of the world's most important staple crops, yet its production is increasingly threatened by the rising frequency of high-temperature stress (HTS). To investigate the genetic basis of anther thermotolerance under field conditions, we performed linkage and association analysis to identify HTS response quantitative trait loci (QTL) using three recombinant inbred line (RIL) populations and an association panel containing 375 diverse maize inbred lines. These analyses resulted in the identification of 16 co-located large QTL intervals. Among the 37 candidate genes identified in these QTL intervals, five have rice or Arabidopsis homologs known to influence pollen and filament development. Notably, one of the candidate genes, ZmDUP707, has been subject to selection pressure during breeding. Its expression is suppressed by HTS, leading to pollen abortion and barren seeds. We also identified several additional candidate genes potentially underly QTL previously reported by other researchers. Taken together, our results provide a pool of valuable candidate genes that could be employed by future breeding programs aiming at enhancing maize HTS tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.16900DOI Listing

Publication Analysis

Top Keywords

candidate genes
16
anther thermotolerance
8
linkage association
8
association analysis
8
qtl intervals
8
genes
5
identification anther
4
thermotolerance genes
4
genes integration
4
integration linkage
4

Similar Publications

Double Deletion of EP402R and EP153R in the Attenuated Lv17/WB/Rie1 African Swine Fever Virus (ASFV) Enhances Safety, Provides DIVA Compatibility, and Confers Complete Protection Against a Genotype II Virulent Strain.

Vaccines (Basel)

December 2024

European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain.

African swine fever virus (ASFV) is a devastating disease affecting domestic and wild suids and causing significant economic losses in the global pig industry. Attenuated modified live virus (MLV) vaccines are the most promising approaches for vaccine development. This study aimed to evaluate the safety and efficacy of four recombinant ASFV genotype II strains, derived from the non-hemadsorbing (non-HAD) attenuated isolate Lv17/WB/Rie1, through the single or simultaneous deletion of virulence-associated genes.

View Article and Find Full Text PDF

: Poxviruses are large DNA viruses that replicate in the host cytoplasm without a nuclear phase. As vaccine vectors, they can package and express large recombinant cassettes from different positions of their genomic core region. We present a comparison between wildtype modified vaccinia Ankara (MVA) and isolate CR19, which has significantly expanded inverted terminal repeats (ITRs).

View Article and Find Full Text PDF

L., (pitaya) is an important tropical fruit crop, and faces significant challenges from soil salinity and heavy metal toxicity. This study explores the role of melatonin (M) in enhancing stress tolerance in pitaya against salinity (S) and copper (Cu) toxicity, both individually and in combination (SCu).

View Article and Find Full Text PDF

Blackgram is an important short-duration grain legume, but its yield is highly affected by various stresses. Among biotic stresses, yellow mosaic disease (YMD) is known as a devastating disease that leads to 100% yield loss under severe conditions. The cultivated lines possess resistance, but exploring more diverse sources of resistance may be useful for pyramiding to improve the durability of said resistance.

View Article and Find Full Text PDF

Characterization of a Major Quantitative Trait Locus for the Whiteness of Rice Grain Using Chromosome Segment Substitution Lines.

Plants (Basel)

December 2024

Key Laboratory of Plant Functional Genomics of the Ministry of Education/Zhongshan Biological Breeding Laboratory, Yangzhou University, Yangzhou 225009, China.

The whiteness of rice grains (WRG) is a key indicator of appearance quality, directly impacting its commercial value. The trait is quantitative, influenced by multiple factors, and no specific genes have been cloned to date. In this study, we first examined the correlation between the whiteness of polished rice, cooked rice, and rice flour, finding that the whiteness of rice flour significantly correlated with both polished and cooked rice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!