Citrus Huanglongbing (HLB) is known as the cancer of citrus, where Liberibacter asiaticus (Las) is the most prevalent strain causing HLB. In this study, we report a novel electrochemiluminescence (ECL) biosensor for the highly sensitive detection of the Las outer membrane protein (Omp) gene by coupling rolling circle amplification (RCA) with a CRISPR/Cas12a-responsive smart DNA hydrogel. In the presence of the target, a large number of amplicons are generated through RCA. The amplicons activate the -cleavage activity of CRISPR/Cas12a through hybridizing with crRNA, triggering the response of smart DNA hydrogel to release the encapsulated AuAg nanoclusters (AuAg NCs) on the electrode and therefore leading to a decreased ECL signal. The ECL intensity change ( - ) is positively correlated with the concentration of the target in the range 50 fM to 5 nM, with a limit of detection of 40 fM. The performance of the sensor has also been evaluated with 10 samples of live citrus leaves (five HLB negative and five HLB positive), and the result is in excellent agreement with the gold standard qPCR result. The sensing strategy has expanded the ECL versatility for detecting varying levels of dsDNA or ssDNA in plants with high sensitivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c02489 | DOI Listing |
Adv Healthc Mater
January 2025
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
Despite the significant potential of short hairpin RNA (shRNA)-mediated gene therapy for various diseases, the clinical success of cancer treatment remains poor, partly because of low selectivity and low efficiency. In this study, an mRNA-initiated autonomous multi-shRNA nanofactory (RNF@CM) is designed for in vivo amplification imaging and precise cancer treatment. The RNF@CM consists of a gold nanoparticle core, an interlayer of two types of three-stranded DNA/RNA hybrid probes, one of which is bound to aptamer-inhibited DNA polymerases, and an outer layer of the cancer cell membrane.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China. Electronic address:
Flap endonuclease 1 (FEN1) plays a vital role in cancer by modulating DNA repair mechanisms, inducing genomic instability, and serving as a promising biomarker for cancer diagnosis and prognosis. In this work, we present the development of a novel DNAzyme signal amplification-directed point-of-care sensing system (Dz-PGM) for the sensitive and specific detection of FEN1. The Dz-PGM system utilizes DNAzyme signal amplification in conjunction with a personal glucose meter (PGM) for reporting, capitalizing on a biochemical cascade initiated by FEN1 recognition.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
Background: Protein misfolding is a key pathological phenomenon driving neurodegenerative diseases that affect millions of people. Visualizing this misfolding process with smart imaging probes would greatly facilitate early diagnosis, etiology elucidation, disease progression monitoring, and drug discovery of neurodegeneration. Although numerous probes have been reported, several unmet needs still exist.
View Article and Find Full Text PDFSci Rep
January 2025
School of Computer Science Engineering (SCOPE), VIT-AP University, Amravati, Andhra Pradesh, India.
In the present scenario, cancerous tumours are common in humans due to major changes in nearby environments. Skin cancer is a considerable disease detected among people. This cancer is the uncontrolled evolution of atypical skin cells.
View Article and Find Full Text PDFFood Sci Biotechnol
January 2025
Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon, Republic of Korea.
Unlabelled: (Arabica) and (Robusta) are valuable agricultural products traded worldwide. In this study, we designed specific primer pairs for Arabica and Robusta using chloroplast genes to distinguish and quantify the two types of coffee beans. We assessed the specificity, sensitivity, and applicability of the qRT-PCR assay using all the primer pairs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!