A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Platelet-derived exosomes alleviate tendon stem/progenitor cell senescence and ferroptosis by regulating AMPK/Nrf2/GPX4 signaling and improve tendon-bone junction regeneration in rats. | LitMetric

Background: Tendon stem/progenitor cell (TSPC) senescence contributes to tendon degeneration and impaired tendon repair, resulting in age-related tendon disorders. Ferroptosis, a unique iron-dependent form of programmed cell death, might participate in the process of senescence. However, whether ferroptosis plays a role in TSPC senescence and tendon regeneration remains unclear. Recent studies reported that Platelet-derived exosomes (PL-Exos) might provide significant advantages in musculoskeletal regeneration and inflammation regulation. The effects and mechanism of PL-Exos on TSPC senescence and tendon regeneration are worthy of further study.

Methods: Herein, we examined the role of ferroptosis in the pathogenesis of TSPC senescence. PL-Exos were isolated and determined by TEM, particle size analysis, western blot and mass spectrometry identification. We investigated the function and underlying mechanisms of PL-Exos in TSPC senescence and ferroptosis via western blot, real-time quantitative polymerase chain reaction, and immunofluorescence analysis in vitro. Tendon regeneration was evaluated by HE staining, Safranin-O staining, and biomechanical tests in a rotator cuff tear model in rats.

Results: We discovered that ferroptosis was involved in senescent TSPCs. Furthermore, PL-Exos mitigated the aging phenotypes and ferroptosis of TSPCs induced by t-BHP and preserved their proliferation and tenogenic capacity. The in vivo animal results indicated that PL-Exos improved tendon-bone healing properties and mechanical strength. Mechanistically, PL-Exos activated AMPK phosphorylation and the downstream nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling pathway, leading to the suppression of lipid peroxidation. AMPK inhibition or GPX4 inhibition blocked the protective effect of PL-Exos against t-BHP-induced ferroptosis and senescence.

Conclusion: In conclusion, ferroptosis might play a crucial role in TSPC aging. AMPK/Nrf2/GPX4 activation by PL-Exos was found to inhibit ferroptosis, consequently leading to the suppression of senescence in TSPCs. Our results provided new theoretical evidence for the potential application of PL-Exos to restrain tendon degeneration and promote tendon regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212425PMC
http://dx.doi.org/10.1186/s13018-024-04869-8DOI Listing

Publication Analysis

Top Keywords

tspc senescence
20
tendon regeneration
16
senescence ferroptosis
12
tendon
10
ferroptosis
10
pl-exos
10
platelet-derived exosomes
8
tendon stem/progenitor
8
stem/progenitor cell
8
senescence
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!