Oligomerization regulates the interaction of Gemin5 with members of the SMN complex and the translation machinery.

Cell Death Discov

Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049, Madrid, Spain.

Published: June 2024

RNA-binding proteins are multifunctional molecules impacting on multiple steps of gene regulation. Gemin5 was initially identified as a member of the survival of motor neurons (SMN) complex. The protein is organized in structural and functional domains, including a WD40 repeats domain at the N-terminal region, a tetratricopeptide repeat (TPR) dimerization module at the central region, and a non-canonical RNA-binding site at the C-terminal end. The TPR module allows the recruitment of the endogenous Gemin5 protein in living cells and the assembly of a dimer in vitro. However, the biological relevance of Gemin5 oligomerization is not known. Here we interrogated the Gemin5 interactome focusing on oligomerization-dependent or independent regions. We show that the interactors associated with oligomerization-proficient domains were primarily annotated to ribosome, splicing, translation regulation, SMN complex, and RNA stability. The presence of distinct Gemin5 protein regions in polysomes highlighted differences in translation regulation based on their oligomerization capacity. Furthermore, the association with native ribosomes and negative regulation of translation was strictly dependent on both the WD40 repeats domain and the TPR dimerization moiety, while binding with the majority of the interacting proteins, including SMN, Gemin2, and Gemin4, was determined by the dimerization module. The loss of oligomerization did not perturb the predominant cytoplasmic localization of Gemin5, reinforcing the cytoplasmic functions of this essential protein. Our work highlights a distinctive role of the Gemin5 domains for its functions in the interaction with members of the SMN complex, ribosome association, and RBP interactome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213948PMC
http://dx.doi.org/10.1038/s41420-024-02057-5DOI Listing

Publication Analysis

Top Keywords

smn complex
16
gemin5
8
members smn
8
wd40 repeats
8
repeats domain
8
tpr dimerization
8
dimerization module
8
gemin5 protein
8
translation regulation
8
smn
5

Similar Publications

Background: Approximately half of human immunodeficiency virus (HIV) patients experience HIV-associated neurocognitive disorders (HAND); however, the neurophysiological mechanisms underlying HAND remain unclear. This study aimed to evaluate changes in functional brain activity patterns during the early stages of HIV infection by comparing local and global indicators using resting-state functional magnetic resonance imaging (rs-fMRI).

Methods: A total of 165 people living with HIV (PLWH) but without neurocognitive disorders (PWND), 173 patients with asymptomatic neurocognitive impairment (ANI), and 100 matched healthy controls (HCs) were included in the study.

View Article and Find Full Text PDF

Walking or hanging: the role of habitat use for body shape evolution in lacertid lizards.

J Evol Biol

January 2025

Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals de la Universitat de Barcelona (BEECA), Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona.

Differences in habitat use impose ecological constraints which in turn lead to functional and morphological differences through adaptation. In fact, a convergent evolutionary pattern is evident when species exhibit similar responses to similar environments. In this study we examine how habitat use influences the evolution of body shape in lizards from the family Lacertidae.

View Article and Find Full Text PDF

Background: Radiofrequency (RF) transmit arrays play a crucial role in various MRI applications, offering enhanced field control and improved imaging capabilities. Designing and optimizing these arrays, particularly in high-field MRI settings, poses challenges related to coupling, resonance, and construction imperfections. Numerical electromagnetic simulation methods effectively aid in the initial design, but discrepancies between simulated and fabricated arrays often necessitate fine-tuning.

View Article and Find Full Text PDF

Unraveling the genetic mysteries of spinal muscular atrophy in Chinese families.

Orphanet J Rare Dis

January 2025

The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, 450052, Henan, China.

Objective: Spinal muscular atrophy (SMA) is a motor neuron disorder encompassing 5q and non-5q forms, causing muscle weakness and atrophy due to spinal cord cell degeneration. Understanding its genetic basis is crucial for genetic counseling and personalized treatment options.

Methods: This study retrospectively analyzed families of patients suspected of SMA at our institution from February 2006 to March 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!