Radiology in Canada is advancing through innovations in clinical practices and research methodologies. Recent developments focus on refining evidence-based practice guidelines, exploring innovative imaging techniques and enhancing diagnostic processes through artificial intelligence. Within the global radiology community, Canadian institutions play an important role by engaging in international collaborations, such as with the American College of Radiology to refine implementation of the Ovarian-Adnexal Reporting and Data System for ultrasound and magnetic resonance imaging. Additionally, researchers have participated in multidisciplinary collaborations to evaluate the performance of artificial intelligence-driven diagnostic tools for chronic liver disease and pediatric brain tumors. Beyond clinical radiology, efforts extend to addressing gender disparities in the field, improving educational practices, and enhancing the environmental sustainability of radiology departments. These advancements highlight Canada's role in the global radiology community, showcasing a commitment to improving patient outcomes and advancing the field through research and innovation. This update underscores the importance of continued collaboration and innovation to address emerging challenges and further enhance the quality and efficacy of radiology practices worldwide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.diii.2024.06.004 | DOI Listing |
Front Neurol
January 2025
Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
Objective: To investigate the altered characteristics of cortical morphology and individual-based morphological brain networks in type 2 diabetes mellitus (T2DM), as well as the neural network mechanisms underlying cognitive impairment in T2DM.
Methods: A total of 150 T2DM patients and 130 healthy controls (HCs) were recruited in this study. The study used voxel- and surface-based morphometric analyses to investigate morphological alterations (including gray matter volume, cortical thickness, cortical surface area, and localized gyrus index) in the brains of T2DM patients.
Clin Kidney J
January 2025
Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China.
Background: Neurovascular coupling (NVC), as indicated by a comprehensive analysis of the amplitude of low-frequency fluctuation (ALFF) and cerebral blood flow (CBF), provides mechanistic insights into neurological disorders. Patients undergoing peritoneal dialysis (PD) and hemodialysis (HD) often face cognitive impairment, the causes of which are not fully understood.
Methods: ALFF was derived from functional magnetic resonance imaging, and CBF was quantified using arterial spin labeling in a cohort comprising 58 patients with PD, 60 patients with HD and 62 healthy controls.
J Diabetes Metab Disord
June 2025
Department of Peripheral Vascular Diseases, First Affiliated Hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, China.
Objective: The escalating prevalence of Type-2 diabetes mellitus (T2DM) poses a significant global health challenge. Utilizing integrative proteomic analysis, this study aimed to identify a panel of potential protein markers for T2DM, enhancing diagnostic accuracy and paving the way for personalized treatment strategies.
Methods: Proteome profiles from two independent cohorts were integrated: cohort 1 composed of 10 T2DM patients and 10 healthy controls (HC), and cohort 2 comprising 87 T2DM patients and 60 healthy controls.
J Transl Med
January 2025
Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Background: Vascular endothelial growth factor (VEGF) and VEGF receptor (VEGFR) inhibitors play a pivotal role in treating various tumors; however, the clinical characteristics and molecular mechanisms of their associated heart failure (HF) remain incompletely understood.
Methods: We investigated the epidemiological characteristics of VEGF or VEGFR inhibitors [VEGF(R)i]-related heart failure (VirHF) using the global pharmacovigilance database Vigibase. The phenotypic features and molecular mechanisms of VirHF were characterized using VEGF(R)i-treated mouse models through a combination of echocardiography, histopathological analysis, and transcriptome sequencing.
J Nucl Med
January 2025
United Theranostics, Bethesda, Maryland.
Computational nuclear oncology for precision radiopharmaceutical therapy (RPT) is a new frontier for theranostic treatment personalization. A key strategy relies on the possibility to incorporate clinical, biomarker, image-based, and dosimetric information in theranostic digital twins (TDTs) of patients to move beyond a one-size-fits-all approach. The TDT framework enables treatment optimization by real-time monitoring of the real-world system, simulation of different treatment scenarios, and prediction of resulting treatment outcomes, as well as facilitating collaboration and knowledge sharing among health care professionals adopting a harmonized TDT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!