Terpene Synthases (TPS) catalyze the formation of multicyclic, complex terpenes and terpenoids from linear substrates. Molecular docking is an important research tool that can further our understanding of TPS multistep mechanisms and guide enzyme design. Standard docking programs are not well suited to tackle the unique challenges of TPS, like the many chemical steps which form multiple stereo-centers, the weak dispersion interactions between the isoprenoid chain and the hydrophobic region of the active site, description of carbocation intermediates, and finding mechanistically meaningful sets of docked poses. To address these and other unique challenges, we developed the multistate, multiscale docking program EnzyDock and used it to study many TPS and other enzymes. In this review we discuss the unique challenges of TPS, the special features of EnzyDock developed to address these challenges and demonstrate its successful use in ongoing research on the bacterial TPS CotB2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2024.04.005 | DOI Listing |
Chem Commun (Camb)
January 2025
School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India.
Atomically precise metal nanoclusters (NCs) and metal-organic frameworks (MOFs) possess distinct properties that can present challenges in certain applications. However, integrating these materials to create new composite functional materials has gained significant interest due to their unique characteristics through a range of applications, particularly in catalysis. Considering MOFs as hosts and NCs as guests, several synergistic effects have been observed in composites, particularly in environmental catalytic reactions.
View Article and Find Full Text PDFLeadersh Health Serv (Bradf Engl)
January 2025
Department of Management and Marketing, Notre Dame University Louaize, Zouk Mosbeh, Lebanon.
Purpose: This study aims to examine the relationships between organizational culture, employee loyalty, trust and job satisfaction within the Lebanese health-care sector. It addresses the critical need to improve employee retention and organizational performance in a context marked by economic instability and political uncertainty. By analyzing data from 270 health-care professionals, the study aims to explore how different aspects of organizational culture - such as transparency, supportiveness and ethical leadership - affect employee trust and satisfaction.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
The study of land cover dynamics and the valuation of ecosystem services in coastal cities is pivotal for guiding sustainable urban development and conserving natural resources amidst the unique challenges posed by their geographical and ecological contexts. This study utilizes a 30 m × 30 m land use/cover change (LUCC) dataset to elucidate the spatiotemporal evolution of LUCC and ecosystem service value (ESV) and the trade-offs and synergistic relationships among ecosystem services in the coastal city of Qingdao under three different scenarios over the past 35 years and in the future based on the dual perspective of the past-future by using the equivalent factor approach (EFA), the PLUS model, and Spearman's rank correlation coefficient. The findings reveal a pronounced expansion in built-up areas in Qingdao from 1985 to 2020, with a concomitant significant reduction in cropland, leading to a fluctuation in the total ESV, which initially increased and then declined.
View Article and Find Full Text PDFNanomicro Lett
January 2025
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
The proliferation of wearable biodevices has boosted the development of soft, innovative, and multifunctional materials for human health monitoring. The integration of wearable sensors with intelligent systems is an overwhelming tendency, providing powerful tools for remote health monitoring and personal health management. Among many candidates, two-dimensional (2D) materials stand out due to several exotic mechanical, electrical, optical, and chemical properties that can be efficiently integrated into atomic-thin films.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.
Optical computing, renowned for its light-speed processing and low power consumption, typically relies on the coherent control of two light sources. However, there are challenges in stabilizing and maintaining high optical spatiotemporal coherence, especially for large-scale computing systems. The coherence requires rigorous feedback circuits and numerous phase shifters, introducing system instability and complexity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!