Magnesium ions (Mg) are crucial in class II terpene cyclases that utilize substrates with diphosphate groups. Interestingly, these enzymes catalyze reactions without cleaving the diphosphate group, instead initiating the reaction through protonation. In our recent research, we discovered a novel class II sesquiterpene cyclase in Streptomyces showdoensis. Notably, we determined its crystal structure and identified Mg within its active site. This finding has shed light on the previously elusive question of Mg binding in class II terpene cyclases. In this chapter, we outline our methods for discovering this novel enzyme, including steps for its purification, crystallization, and kinetic analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2024.02.018 | DOI Listing |
Sci Data
December 2024
Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
Abscisic acid (ABA) is a crucial phytohormone that regulates plant growth and stress responses. While substantial knowledge exists about transcriptional regulation, the molecular mechanisms underlying ABA-triggered translational regulation remain unclear. Recent advances in deep sequencing of ribosome footprints (Ribo-seq) enable the mapping and quantification of mRNA translation efficiency.
View Article and Find Full Text PDFGene
December 2024
Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China. Electronic address:
Santalum album is an economically important plant in the craft, spices and medicine industries. The main chemical constituents found in sandalwood essential oils are sesquiterpenes. 3-Hydroxy-3-methylglutaryl monoacyl-coenzyme A reductase (HMGR) is one of the rate-limiting enzymes required for the synthesis of sandal sesquiterpenes, but there are no studies on the HMGR gene in S.
View Article and Find Full Text PDFPharmacol Res
December 2024
Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China; DongTai People's Hospital, Dongtai, Jiangsu, China. Electronic address:
Regulated cell death (RCD) is a type of cell death modulated by specific signal transduction pathways. Currently, known RCD types include apoptosis, autophagy, ferroptosis, necroptosis, cuproptosis, pyroptosis, and NETosis. Mutations in cancer cells may prevent the RCD pathway; therefore, targeting RCD in tumors has become a promising therapeutic approach.
View Article and Find Full Text PDFBioorg Chem
December 2024
Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China. Electronic address:
Sesquiterpene lactones (SLs) are a class of natural products with diverse structural scaffoldings and biological activities, making them intriguing objects in the fields of pharmaceutical industry, drug development, and pharmacology. Herein, fifteen SLs, including eleven undescribed SLs compounds sauruintones A-K (1-8 and 13-15), were isolated and identified from the aerial parts of Saussurea involucrata. Their structures were characterized by using mass spectrometry, spectroscopic methods, computational calculations, and single crystal X-ray diffraction.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
BcABA3 is an unusual sesquiterpene synthase that lacks the conserved DDxxD and DTE/NSE motifs. Despite this, it can catalyze the conversion of farnesyl diphosphate to 2Z,4E-α-ionylideneethane. We used structure prediction, multiscale simulations, and site-directed mutagenesis experiments to investigate BcABA3 and its catalytic mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!