Deciphering magnesium binding site and structure-function insights in a class II sesquiterpene cyclase.

Methods Enzymol

State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China. Electronic address:

Published: June 2024

Magnesium ions (Mg) are crucial in class II terpene cyclases that utilize substrates with diphosphate groups. Interestingly, these enzymes catalyze reactions without cleaving the diphosphate group, instead initiating the reaction through protonation. In our recent research, we discovered a novel class II sesquiterpene cyclase in Streptomyces showdoensis. Notably, we determined its crystal structure and identified Mg within its active site. This finding has shed light on the previously elusive question of Mg binding in class II terpene cyclases. In this chapter, we outline our methods for discovering this novel enzyme, including steps for its purification, crystallization, and kinetic analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mie.2024.02.018DOI Listing

Publication Analysis

Top Keywords

class sesquiterpene
8
sesquiterpene cyclase
8
class terpene
8
terpene cyclases
8
deciphering magnesium
4
magnesium binding
4
binding site
4
site structure-function
4
structure-function insights
4
class
4

Similar Publications

Transcriptome and translatome profiling of Col-0 and grp7grp8 under ABA treatment in Arabidopsis.

Sci Data

December 2024

Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.

Abscisic acid (ABA) is a crucial phytohormone that regulates plant growth and stress responses. While substantial knowledge exists about transcriptional regulation, the molecular mechanisms underlying ABA-triggered translational regulation remain unclear. Recent advances in deep sequencing of ribosome footprints (Ribo-seq) enable the mapping and quantification of mRNA translation efficiency.

View Article and Find Full Text PDF

Identification of 3-hydroxy-3-methylglutaryl monoacyl-coenzyme A reductase (HMGR) associated with the synthesis of terpenoids in Santalum album L.

Gene

December 2024

Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China. Electronic address:

Santalum album is an economically important plant in the craft, spices and medicine industries. The main chemical constituents found in sandalwood essential oils are sesquiterpenes. 3-Hydroxy-3-methylglutaryl monoacyl-coenzyme A reductase (HMGR) is one of the rate-limiting enzymes required for the synthesis of sandal sesquiterpenes, but there are no studies on the HMGR gene in S.

View Article and Find Full Text PDF

Targeting regulated cell death (RCD) with naturally derived sesquiterpene lactones in cancer therapy.

Pharmacol Res

December 2024

Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China; DongTai People's Hospital, Dongtai, Jiangsu, China. Electronic address:

Regulated cell death (RCD) is a type of cell death modulated by specific signal transduction pathways. Currently, known RCD types include apoptosis, autophagy, ferroptosis, necroptosis, cuproptosis, pyroptosis, and NETosis. Mutations in cancer cells may prevent the RCD pathway; therefore, targeting RCD in tumors has become a promising therapeutic approach.

View Article and Find Full Text PDF

Mining of antioxidant sesquiterpene lactones from the aerial parts of Saussurea involucrata with feature-based molecular network strategy.

Bioorg Chem

December 2024

Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China. Electronic address:

Sesquiterpene lactones (SLs) are a class of natural products with diverse structural scaffoldings and biological activities, making them intriguing objects in the fields of pharmaceutical industry, drug development, and pharmacology. Herein, fifteen SLs, including eleven undescribed SLs compounds sauruintones A-K (1-8 and 13-15), were isolated and identified from the aerial parts of Saussurea involucrata. Their structures were characterized by using mass spectrometry, spectroscopic methods, computational calculations, and single crystal X-ray diffraction.

View Article and Find Full Text PDF

Molecular Insight into the Catalytic Mechanism of the Sesquiterpene Cyclase BcABA3.

J Agric Food Chem

December 2024

CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.

BcABA3 is an unusual sesquiterpene synthase that lacks the conserved DDxxD and DTE/NSE motifs. Despite this, it can catalyze the conversion of farnesyl diphosphate to 2Z,4E-α-ionylideneethane. We used structure prediction, multiscale simulations, and site-directed mutagenesis experiments to investigate BcABA3 and its catalytic mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!