Mesostriatal Dopaminergic Circuit Dysfunction in Schizophrenia: A Multimodal Neuromelanin-Sensitive Magnetic Resonance Imaging and [F]-DOPA Positron Emission Tomography Study.

Biol Psychiatry

Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom. Electronic address:

Published: October 2024

Background: Striatal hyperdopaminergia is implicated in the pathoetiology of schizophrenia, but how this relates to dopaminergic midbrain activity is unclear. Neuromelanin (NM)-sensitive magnetic resonance imaging provides a marker of long-term dopamine function. We examined whether midbrain NM-sensitive magnetic resonance imaging contrast-to-noise ratio (NM-CNR) was higher in people with schizophrenia than in healthy control (HC) participants and whether this correlated with dopamine synthesis capacity.

Methods: One hundred fifty-four participants (schizophrenia group: n = 74, HC group: n = 80) underwent NM-sensitive magnetic resonance imaging of the substantia nigra and ventral tegmental area (SN-VTA). A subset of the schizophrenia group (n = 38) also received [F]-DOPA positron emission tomography to measure dopamine synthesis capacity (K) in the SN-VTA and striatum.

Results: SN-VTA NM-CNR was significantly higher in patients with schizophrenia than in HC participants (effect size = 0.38, p = .019). This effect was greatest for voxels in the medial and ventral SN-VTA. In patients, SN-VTA K positively correlated with SN-VTA NM-CNR (r = 0.44, p = .005) and striatal K (r = 0.71, p < .001). Voxelwise analysis demonstrated that SN-VTA NM-CNR was positively associated with striatal K (r = 0.53, p = .005) and that this relationship seemed strongest between the ventral SN-VTA and associative striatum in schizophrenia.

Conclusions: Our results suggest that NM levels are higher in patients with schizophrenia than in HC individuals, particularly in midbrain regions that project to parts of the striatum that receive innervation from the limbic and association cortices. The direct relationship between measures of NM and dopamine synthesis suggests that these aspects of schizophrenia pathophysiology are linked. Our findings highlight specific mesostriatal circuits as the loci of dopamine dysfunction in schizophrenia and thus as potential therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopsych.2024.06.013DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
16
resonance imaging
16
nm-sensitive magnetic
12
dopamine synthesis
12
group n =
12
sn-vta nm-cnr
12
schizophrenia
9
dysfunction schizophrenia
8
[f]-dopa positron
8
positron emission
8

Similar Publications

Magnetic Resonance Imaging (MRI) safety is a critical concern in the Asia-Oceania region, as it is elsewhere in the world, due to the unique and complex MRI environment that demands attention. This call-for-action outlines ten critical steps to enhance MRI safety and promote a culture of responsibility and accountability in the Asia-Oceania region. Key focus areas include strengthening education and expertise, improving quality assurance, fostering collaboration, increasing public awareness, and establishing national safety boards.

View Article and Find Full Text PDF

Backbone resonance assignments of PhoCl, a photocleavable protein.

Biomol NMR Assign

January 2025

High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.

PhoCl is a photocleavable protein engineered from a green-to-red photoconvertible fluorescent protein by circular permutation, and has been used in various optogenetic applications including precise control of protein localization and activity in cells. Upon violet light illumination, PhoCl undergoes a β-elimination reaction to be cleaved at the chromophore, resulting in spontaneous dissociation into a large empty barrel and a small C-terminal peptide. However, the structural determinants and the mechanism of the PhoCl photocleavage remain elusive, hindering the further development of more robust photocleavable optogenetic tools.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Disentangling the neural underpinnings of response inhibition in disruptive behavior and co-occurring ADHD.

Eur Child Adolesc Psychiatry

January 2025

Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

While impaired response inhibition has been reported in attention-deficit/hyperactivity disorder (ADHD), findings in disruptive behavior disorders (DBDs) have been inconsistent, probably due to unaccounted effects of co-occurring ADHD in DBD. This study investigated the associations of behavioral and neural correlates of response inhibition with DBD and ADHD symptom severity, covarying for each other in a dimensional approach. Functional magnetic resonance imaging data were available for 35 children and adolescents with DBDs (8-18 years old, 19 males), and 31 age-matched unaffected controls (18 males) while performing a performance-adjusted stop-signal task.

View Article and Find Full Text PDF

Photorealistic rendering of fetal faces from raw magnetic resonance imaging data.

Ultrasound Obstet Gynecol

January 2025

Decision and Bayesian Computation, Neuroscience & Computational Biology Departments, CNRS UMR 3571, Institut Pasteur, Paris, France.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!