Tmem119 deficiency delays bone repair in mice.

Bone

Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan. Electronic address:

Published: September 2024

Tmem119 was identified as a bone anabolic factor in osteoblasts, however the roles of Tmem119 on bone repair have remained unknown. Therefore, we herein investigated the roles of Tmem119 on bone repair by examining the bone repair process after a femoral bone defect using Tmem119-deficient mice. In Tmem119-deficient mice, bone repair after a femoral bone defect was significantly delayed 10 and 14 days after bone injury in female and male mice with 3-dimensional micro-computed tomography analyses, respectively. The number of alkaline phosphatase-positive cells at the damaged sites was significantly decreased 7 days after bone injury in Tmem119-deficient mice, although the number of Osterix-positive cells was not significantly different 4 days after bone injury. The number of tartrate-resistant acid phosphatase-positive multinucleated cells as well as the number and luminal area of CD31-positive vessels at the damaged sites were not significantly different between Tmem119-deficient and wild-type mice. The present study first showed that Tmem119 deficiency delayed bone repair partly through a decrease in the osteoblastic bone formation of differentiated osteoblasts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2024.117177DOI Listing

Publication Analysis

Top Keywords

bone repair
24
bone
13
tmem119-deficient mice
12
bone injury
12
tmem119 deficiency
8
roles tmem119
8
tmem119 bone
8
femoral bone
8
bone defect
8
damaged sites
8

Similar Publications

With the advancement of medical technology, the utilization of bioactive materials to promote bone repair has emerged as a significant research area. Hydrogels, as biomaterials, play a crucial role in bone tissue engineering. These hydrogels exhibit high biocompatibility, providing in vivo ecological conditions conducive to cell survival, and offer substantial advantages in facilitating bone repair.

View Article and Find Full Text PDF

This surgical video demonstrates the full-endoscopic repair of an incidental durotomy, offering practical guidance and insights into the technique. Incidental dural tears occur in up to 1% of lumbar endoscopic surgeries, with risk factors including interlaminar approaches, stenosis decompression, and power drill usage. Although many dural tears are managed with sealant or gel foam, no standard exists for when surgical repair is necessary.

View Article and Find Full Text PDF

Reliable and streamlined model setup for digital twin assessment of fracture healing.

J Biomech

January 2025

Department of Mechanical Engineering & Mechanics, Lehigh University, 27 Memorial Drive West, Bethlehem, PA 18015, USA. Electronic address:

In large animal models of bone fracture repair, postmortem torsional testing is commonly used to assess healing biomechanics. Bending and axial tests are physiologically relevant, but much less commonly performed. Virtual torsional testing using image-based finite element models has been validated to postmortem bench tests, but its predictive value for capturing whole-bone mechanics and fracture healing quality under other physiologically relevant loading modes has not yet been established.

View Article and Find Full Text PDF

Regulation of T Cell Glycosylation by MXene/β-TCP Nanocomposite for Enhanced Mandibular Bone Regeneration.

Adv Healthc Mater

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.

View Article and Find Full Text PDF

Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!