Trophoblasts play a crucial role in embryo implantation and in interacting with the maternal uterus. The trophoblast lineage develops into a substantial part of the placenta, a temporary extra-embryonic organ, capable of undergoing distinctive epigenetic events during development. The critical role of trophoblast-specific epigenetic signatures in regulating placental development has become known, significantly advancing our understanding of trophoblast identity and lineage development. Scientific efforts are revealing how trophoblast-specific epigenetic signatures mediate stage-specific gene regulatory programming during the development of the trophoblast lineage. These epigenetic signatures have a significant impact on blastocyst formation, placental development, as well as the growth and survival of embryos and fetuses. In evolution, DNA hypomethylation in the trophoblast lineage is conserved, and there is a significant disparity in the control of epigenetic dynamics and the landscape of genomic imprinting. Scientists have used murine and human multipotent trophoblast cells as in vitro models to recapitulate the essential epigenetic processes of placental development. Here, we review the epigenetic signatures of the trophoblast lineage and their biological functions to enhance our understanding of placental evolution, development, and function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cdev.2024.203934 | DOI Listing |
J Endocr Soc
January 2025
Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig 04103, Germany.
Metabolic diseases affect a consistent part of the human population, leading to rising mortality rates. This raises the need for diagnostic tools to monitor the progress of these diseases. Lately, circulating cell-free DNA (cfDNA) has emerged as a promising biomarker for various metabolic diseases, including obesity, type 2 diabetes, and metabolic-associated fatty liver disease.
View Article and Find Full Text PDFEnviron Epigenet
January 2025
Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia.
Fine particulate matter (PM), an atmospheric pollutant that settles deep in the respiratory tract, is highly harmful to human health. Despite its well-known impact on lung function and its ability to exacerbate asthma, the molecular basis of this effect is not fully understood. This integrated transcriptomic and epigenomic data analysis from publicly available datasets aimed to determine the impact of PM exposure and its association with asthma in human airway epithelial cells.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
From the Department of Neuroradiology (G.B., N.H., F.D.v.D., A.B., Z.K.), University Hospital Zürich, Zürich, Switzerland.
Background And Purpose: Whether differences in the O-methylguanine-DNA methyltransferase () promoter methylation status of glioblastoma (GBM) are reflected in MRI markers remains largely unknown. In this work, we analyze the ADC in the perienhancing infiltration zone of GBM according to the corresponding status by using a novel distance-resolved 3D evaluation.
Materials And Methods: One hundred one patients with wild-type GBM were retrospectively analyzed.
J Immunother Cancer
January 2025
Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS/INSERM/UNISTRA, Illkirch-Graffenstaden, France
Background: Endogenous retrovirus (ERV) elements are genomic footprints of ancestral retroviral infections within the human genome. While the dysregulation of ERV transcription has been linked to immune cell infiltration in various cancers, its relationship with immune checkpoint inhibitor (ICI) response in solid tumors, particularly metastatic clear-cell renal cell carcinoma (ccRCC), remains inadequately explored.
Methods: This study analyzed patients with metastatic ccRCC from two prospective clinical trials, encompassing 181 patients receiving nivolumab in the CheckMate trials (-009 to -010 and -025) and 48 patients treated with the ipilimumab-nivolumab combination in the BIONIKK trial.
Genome Biol
January 2025
Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
Background: East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. We set out to bridge this gap and to understand the interactions between TEs and their cichlid hosts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!