Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we present a nanocomposite hydrogel designed for skin motion sensing. The hydrogel is based on poly(acrylamide) crosslinked with gold nanoparticles covalently bound to the polymer matrix, yielding a robust, highly elastic and conductive material. The choice of amino acid derivative - N,N'-diacryloylcystine salt (BISS) - as a crosslinker allows for the introduction of gold nanoparticles, due to the presence of sulfide groups in its structure. During the nanoparticle modification process, covalent bonds between gold and sulfur atoms are formed as the disulfide bond is cleaved. In result of this self-assembly process, a multifunctional Au-BISS crosslinker is formed, enhancing the material's mechanical properties and introducing electrical conductivity. To confer anti-freezing properties and limit water evaporation, a binary mixture of water and glycerol was used. The resultant hydrogel exhibits high elasticity, strain sensitivity across a wide strain range and various types of deformation (elongation, bending, compression) with exceptional response time (120 ms) and recovery time (90 ms). The material's cold-resistance, resilience, and conductivity make it well-suited for real-time monitoring of joint movements and speech recognition, with potential applications in electronic skin and healthcare monitoring devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.06.186 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!