Protein emulsifiers play an important role in formulation science, from food product development to emerging applications in biotechnologies. The impact of mixed protein assemblies on surface composition and interfacial shear mechanics remains broadly unexplored, in comparison to the impact that formulation has on dilatational mechanics and surface tension or pressure. In this report, we use interfacial shear rheology to quantify the evolution of interfacial shear moduli as a function of composition in bovine serum albumin (BSA)/β-casein mixed assemblies. We present the pronounced difference in mechanics of these two protein, at oil interfaces, and observe the dominance of β-casein in regulating interfacial shear mechanics. This observation correlates well with the strong asymmetry of adsorption of these two proteins, characterised by fluorescence microscopy. Using neutron reflectometry and fluorescence recovery after photobleaching, we examine the architecture of corresponding protein assemblies and their surface diffusion, providing evidence for distinct morphologies, but surprisingly comparable diffusion profiles. Finally, we explore the impact of crosslinking and sequential protein adsorption on the interfacial shear mechanics of corresponding assemblies. Overall, this work indicates that, despite comparable surface densities, BSA and β-casein assemblies at liquid-liquid interfaces display almost 2 orders of magnitude difference in interfacial shear storage modulus and markedly different viscoelastic profiles. In addition, co-adsorption and sequential adsorption processes are found to further modulate interfacial shear mechanics. Beyond formulation science, the understanding of complex mixed protein assemblies and mechanics may have implications for the stability of emulsions and may underpin changes in the mechanical strength of corresponding interfaces, for example in tissue culture or in physiological conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.06.111 | DOI Listing |
Langmuir
December 2024
School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom.
To form nonspherical emulsion droplets, the interfacial tension driving droplet sphericity must be overcome. This can be achieved through interfacial particle jamming; however, careful control of particle coverage is required. In this work, we present a scalable novel batch process to form nonspherical particle-stabilized emulsions.
View Article and Find Full Text PDFSmall Struct
November 2024
Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
Taking inspiration from diverse interlocking and adhesion structures found in nature, a biaxially interlocking interface is developed in this work. This interface is formed by interconnecting two electrostatically flocked substrates and its mechanical strength is enhanced through the incorporation of enoki mushroom-shaped microfibers and deposited extracellular matrix (ECM). Tips of flocked straight fibers can be transformed into mushroom shapes through thermal treatment.
View Article and Find Full Text PDFLangmuir
December 2024
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
Polytetrafluoroethylene (PTFE) fibers exhibit high inertness and demonstrate limited interfacial bonding capabilities with other materials. To overcome this limitation, PTFE@ZnO fibers were developed by depositing the porous ZnO layer onto PTFE fibers via a hydrothermal reaction, and porous fibers were adsorbed curing agents or initiators. The interfacial shear strength (ILSS) of the composites demonstrated a significant improvement, particularly in the case of composites containing PTFE/initiator fibers, where the ILSS increased by 104.
View Article and Find Full Text PDFACS Omega
December 2024
Enhanced Oil Recovery & Carbon Utilization and Storage Laboratory, Department of Petroleum Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826 004, India.
This research explores the development of engineered oil-water microemulsions stabilized by a synergistic combination of polymer and surfactant to enhance stability and interfacial properties for improved enhanced oil recovery (EOR). Conventional surfactant-stabilized emulsions often suffer from phase instability and limited wettability alteration during water flooding and chemical injection, hindering the EOR efficiency. In contrast, our formulations incorporating polymers significantly increase the emulsion viscosity and resilience to temperature fluctuations, resulting in enhanced phase stability.
View Article and Find Full Text PDFFood Chem
December 2024
State Key Laboratory of Food Science and Resource, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China. Electronic address:
In this study, pea protein isolate (PPI) and cellulose nanocrystals (CNC) were used to prepare oil-in-water emulsions, and the effects of pH and the oil content on the properties of the emulsions were investigated. The microstructural analysis revealed that PPI and CNC formed complexes by electrostatic attraction at pH 3.0 and 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!