Impact of geometric and hemodynamic changes on a mechanobiological model of atherosclerosis.

Comput Methods Programs Biomed

Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain; Public University of Navarra (UPNA), Pamplona, Spain. Electronic address:

Published: September 2024

Background And Objective: In this work, the analysis of the importance of hemodynamic updates on a mechanobiological model of atheroma plaque formation is proposed.

Methods: For that, we use an idealized and axisymmetric model of carotid artery. In addition, the behavior of endothelial cells depending on hemodynamical changes is analyzed too. A total of three computational simulations are carried out and their results are compared: an uncoupled model and two models that consider the opposite behavior of endothelial cells caused by hemodynamic changes. The model considers transient blood flow using the Navier-Stokes equation. Plasma flow across the endothelium is determined with Darcy's law and the Kedem-Katchalsky equations, considering the three-pore model, which is also employed for the flow of substances across the endothelium. The behavior of the considered substances in the arterial wall is modeled with convection-diffusion-reaction equations, and the arterial wall is modeled as a hyperelastic Yeoh's material.

Results: Significant variations are noted in both the morphology and stenosis ratio of the plaques when comparing the uncoupled model to the two models incorporating updates for geometry and hemodynamic stimuli. Besides, the phenomenon of double-stenosis is naturally reproduced in the models that consider both geometric and hemodynamical changes due to plaque growth, whereas it cannot be predicted in the uncoupled model.

Conclusions: The findings indicate that integrating the plaque growth model with geometric and hemodynamic settings is essential in determining the ultimate shape and dimensions of the carotid plaque.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2024.108296DOI Listing

Publication Analysis

Top Keywords

geometric hemodynamic
8
hemodynamic changes
8
model
8
mechanobiological model
8
behavior endothelial
8
endothelial cells
8
hemodynamical changes
8
uncoupled model
8
model models
8
models consider
8

Similar Publications

Aims: Atrial septal defect (ASD) and partial abnormal pulmonary venous connection (PAPVC) are noncyanotic congenital heart defects (CHD) that produce a left-to-right shunt. This single-center retrospective study aimed to assess the hemodynamic impact of isolated ASD, isolated PAPVC, and ASD-associated PAPVC using cardiovascular magnetic resonance (CMR).

Methods And Results: From our CMR registry (2002-2024), 110 patients were included: isolated ASD (n=64), isolated PAPVC (n=18), ASD-associated PAPVC (n=28, mostly sinus venosus septal defects).

View Article and Find Full Text PDF

Coronary anatomy governs local haemodynamics associated with atherosclerotic development, progression and ultimately adverse clinical outcomes. However, lack of large sample size studies and methods to link adverse haemodynamics to anatomical information has hindered meaningful insights to date. The Left Main coronary bifurcations of 127 patients with suspected coronary artery disease in the absence of significant stenosis were segmented from CTCA images before computing the local haemodynamics.

View Article and Find Full Text PDF
Article Synopsis
  • TIPS surgery is common for treating portal hypertension, impacting postoperative complications tied to the portal venous system's hemodynamics.
  • The study utilizes computational modeling to evaluate hemodynamic outcomes based on varying shunt positions and geometrical simplification strategies, using clinical data from two patients.
  • Results indicated that placing the shunt at the main portal vein is preferable for reducing postoperative portal pressure and wall shear stress, while underscoring the importance of model simplifications in simulations.
View Article and Find Full Text PDF

Background And Objective: Cerebral aneurysms occur as balloon-like outpouchings in an artery, which commonly develop at the weak curved regions and bifurcations. When aneurysms are detected, understanding the risk of rupture is of immense clinical value for better patient management. Towards this, Fluid-Structure Interaction (FSI) studies can improve our understanding of the mechanics behind aneurysm initiation, progression, and rupture.

View Article and Find Full Text PDF

Numerical study of the effects of minor structures and mean velocity fields in the cerebrospinal fluid flow.

Fluids Barriers CNS

December 2024

School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, 47907, IN, USA.

The importance of optimizing intrathecal drug delivery is highlighted by its potential to improve patient health outcomes. Findings from previous computational studies, based on an individual or a small group, may not be applicable to the wider population due to substantial geometric variability. Our study aims to circumvent this problem by evaluating an individual's cycle-averaged Lagrangian velocity field based on the geometry of their spinal subarachnoid space.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!