Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we introduce an innovative photoacoustic frequency shift (PAFS) technique for hydrogen (H) detection, complemented by both theoretical models and practical experiments. To mitigate cross-sensitivity, we analyzed the sound speeds of six different gases, confirming minimal interference with H due to significant velocity disparities. Central to our approach is the design of a miniaturized step-added T-type Photoacoustic Cell (PAC), with parameters meticulously optimized for enhanced performance. Using COMSOL Multiphysics' Thermal Viscous Acoustics module, we conducted simulations to evaluate the quality factor and acoustic pressure, both crucial for the sensor's efficiency. Additionally, we assessed the system's stability, influenced by gas flow, through gas velocity distribution analyses using the Computational Fluid Dynamics module. Experimental investigations focused on the system's sensing performance, revealing a distinct frequency shift of ∼45 Hz for every 1 % change in H concentration, with a high linear correlation (R = 0.99825). The system's response and recovery times were measured at 1.09 s and 1.25 s, respectively. Long-term stability, evaluated over 3000 s using Allan deviation, indicated a minimum detection limit (MDL) of 102.47 ppm at an integration time of 375 s. These findings validate the efficacy of the step-added T-type PAC in H detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.124727 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!