Background: The contribution of the tumor microenvironment and extracellular matrix to the aggressive biology of Gastric Cancer (GC) has been recently characterized; however, the role of EMILIN-1 in this context is unknown. EMILIN-1 is an essential structural element for the maintenance of lymphatic vessel (LV) integrity and displays anti-proliferative properties as demonstrated in skin and colon cancer. Given the key role of LVs in GC progression, the aim of this study was to investigate the role of EMILIN-1 in GC mouse models.

Methods: We used the syngeneic YTN16 cells which were injected subcutaneously and intraperitoneally in genetically modified EMILIN-1 mice. In alternative, carcinogenesis was induced using N-Methyl-N-nitrosourea (MNU). Mouse-derived samples and human biopsies were analyzed by IHC and IF to the possible correlation between EMILIN-1 expression and LV pattern.

Results: Transgenic mice developed tumors earlier compared to WT animals. 20 days post-injection tumors developed in EMILIN-1 mutant mice were larger and displayed a significant increase of lymphangiogenesis. Treatment of transgenic mice with MNU associated with an increased number of tumors, exacerbated aggressive lesions and higher levels of LV abnormalities. A significant correlation between the levels of EMILIN-1 and podoplanin was detected also in human samples, confirming the results obtained with the pre-clinical models.

Conclusions: This study demonstrates for the first time that loss of EMILIN-1 in GC leads to lymphatic dysfunction and proliferative advantages that sustain tumorigenesis, and assess the use of our animal model as a valuable tool to verify the fate of GC upon loss of EMILIN-1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335817PMC
http://dx.doi.org/10.1007/s10120-024-01528-zDOI Listing

Publication Analysis

Top Keywords

emilin-1
10
extracellular matrix
8
gastric cancer
8
role emilin-1
8
transgenic mice
8
loss emilin-1
8
matrix protein
4
protein emilin-1
4
emilin-1 impacts
4
impacts microenvironment
4

Similar Publications

New insights into the structural role of EMILINs within the human skin microenvironment.

Sci Rep

December 2024

Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany.

Supramolecular extracellular matrix (ECM) networks play an essential role in skin architecture and function. Elastin microfibril interface-located proteins (EMILINs) comprise a family of three extracellular glycoproteins that serve as essential structural components of the elastin/fibrillin microfibril network, and exert crucial functions in cellular signaling. Little is known about the structural nature of EMILIN networks in skin.

View Article and Find Full Text PDF

Elucidating the roles of SOD3 correlated genes and reactive oxygen species in rare human diseases using a bioinformatic-ontology approach.

PLoS One

October 2024

Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Altnagelvin Hospital, Derry, Londonderry, Northern Ireland.

Article Synopsis
  • Superoxide Dismutase 3 (SOD3) helps reduce oxidative stress in the body by converting superoxide into hydrogen peroxide, which can cause biomolecular damage when not regulated.
  • This research used a large dataset (GSE2109) of 2,158 cancer samples to analyze the expression of SOD3 and its correlation with other genes, leading to the identification of genes that are both positively and negatively correlated.
  • From the analysis, 12 significant disorders were linked to SOD3, revealing 35 novel genes associated with conditions like Ehlers-Danlos Syndrome and Renal Tubular Dysgenesis, which may help in understanding the role of oxidative stress in these diseases.
View Article and Find Full Text PDF
Article Synopsis
  • Familial Mediterranean Fever (FMF) is a hereditary illness that causes fever, stomach pain, and joint swelling, and colchicine is the main treatment but doesn’t cure it.
  • In a study, they looked at blood samples from 50 people, including healthy individuals and those with active or inactive FMF, to measure certain markers tied to the disease.
  • The results showed that some markers were higher in patients having FMF attacks compared to healthy people and those in remission, suggesting these markers could help in finding new ways to diagnose and treat FMF.
View Article and Find Full Text PDF

The extracellular matrix protein EMILIN-1 impacts on the microenvironment by hampering gastric cancer development and progression.

Gastric Cancer

September 2024

Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy.

Background: The contribution of the tumor microenvironment and extracellular matrix to the aggressive biology of Gastric Cancer (GC) has been recently characterized; however, the role of EMILIN-1 in this context is unknown. EMILIN-1 is an essential structural element for the maintenance of lymphatic vessel (LV) integrity and displays anti-proliferative properties as demonstrated in skin and colon cancer. Given the key role of LVs in GC progression, the aim of this study was to investigate the role of EMILIN-1 in GC mouse models.

View Article and Find Full Text PDF

Background: Regeneration of injured tissue is dependent on stem/progenitor cells, which can undergo proliferation and maturation processes to replace the lost cells and extracellular matrix (ECM). Bone has a higher regenerative capacity than other tissues, with abundant mesenchymal progenitor cells in the bone marrow, periosteum, and surrounding muscle. However, the treatment of bone fractures is not always successful; a marked number of clinical case reports have described nonunion or delayed healing for various reasons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!