Fecal metaproteomics is a useful approach to measure changes in microbial and host protein abundance and to infer which members of the gut microbiota are involved in specific functions and pathways. This chapter describes a protocol enabling analysis and characterization of fecal metaproteomes, successfully applied to human, mouse, and rat stool samples. The protocol combines mechanical and thermal treatments for protein extraction, a centrifugal filter-based procedure for cleanup and digestion, long-gradient liquid chromatography for peptide separation, and high-resolution mass spectrometry for peptide detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3910-8_11 | DOI Listing |
ISME Commun
January 2024
Otto-von-Guericke University Magdeburg, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Saxony-Anhalt, Germany.
A comprehensive understanding of microbial community dynamics is fundamental to the advancement of environmental microbiology, human health, and biotechnology. Metaproteomics, defined as the analysis of all proteins present within a microbial community, provides insights into these complex systems. Microbial adaptation and activity depend to an important extent on newly synthesized proteins (nP), however, the distinction between nP and bulk proteins is challenging.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC.
Unlabelled: Diet has strong impacts on the composition and function of the gut microbiota with implications for host health. Therefore, it is critical to identify the dietary components that support growth of specific microorganisms . We used protein-based stable isotope fingerprinting (Protein-SIF) to link microbial species in gut microbiota to their carbon sources by measuring each microbe's natural C content (δC) and matching it to the C content of available substrates.
View Article and Find Full Text PDFGut Microbes
December 2025
Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia.
The gut microbiota is a crucial link between diet and cardiovascular disease (CVD). Using fecal metaproteomics, a method that concurrently captures human gut and microbiome proteins, we determined the crosstalk between gut microbiome, diet, gut health, and CVD. Traditional CVD risk factors (age, BMI, sex, blood pressure) explained < 10% of the proteome variance.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada.
Unlabelled: Microbiota-released extracellular vesicles (MEVs) have emerged as a key player in intercellular signaling. However, their involvement in the gut-brain axis has been poorly investigated. We hypothesize that MEVs cross host cellular barriers and deliver their cargoes of bioactive compounds to the brain.
View Article and Find Full Text PDFPharmacol Res
December 2024
Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria. Electronic address:
Our understanding of how sex and age influence chronic pain at the molecular level is still limited with wide-reaching consequences for adolescent patients. Here, we leveraged deep proteome profiling of mouse dorsal root ganglia (DRG) from adolescent (4-week-old) and adult (12-week-old) male and female mice to investigate the establishment of neuropathic pain in the spared nerve injury (SNI)-model in parallel. We quantified over 12,000 proteins, including notable ion channels involved in pain, highlighting the sensitivity of our approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!