A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metaplastic neuromodulation via transcranial direct current stimulation has no effect on corticospinal excitability and neuromuscular fatigue. | LitMetric

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation tool with potential for managing neuromuscular fatigue, possibly due to alterations in corticospinal excitability. However, inconsistencies in intra- and inter- individual variability responsiveness to tDCS limit its clinical use. Emerging evidence suggests harnessing homeostatic metaplasticity induced via tDCS may reduce variability and boost its outcomes, yet little is known regarding its influence on neuromuscular fatigue in healthy adults. We explored whether cathodal tDCS (ctDCS) prior to exercise combined with anodal tDCS (atDCS) could augment corticospinal excitability and attenuate neuromuscular fatigue. 15 young healthy adults (6 males, 22 ± 4 years) participated in four pseudo-randomised neuromodulation sessions: sham stimulation prior and during exercise, sham stimulation prior and atDCS during exercise, ctDCS prior and atDCS during exercise, ctDCS prior and sham stimulation during exercise. The exercise constituted an intermittent maximal voluntary contraction (MVC) of the right first dorsal interosseous (FDI) for 10 min. Neuromuscular fatigue was quantified as an attenuation in MVC force, while motor evoked potential (MEP) amplitude provided an assessment of corticospinal excitability. MEP amplitude increased during the fatiguing exercise, whilst across time, force decreased. There were no differences in MEP amplitudes or force between neuromodulation sessions. These outcomes highlight the ambiguity of harnessing metaplasticity to ameliorate neuromuscular fatigue in young healthy individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252223PMC
http://dx.doi.org/10.1007/s00221-024-06874-zDOI Listing

Publication Analysis

Top Keywords

neuromuscular fatigue
24
corticospinal excitability
16
ctdcs prior
12
sham stimulation
12
transcranial direct
8
direct current
8
current stimulation
8
healthy adults
8
prior exercise
8
fatigue young
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!