Forest management influences the occurrence of tree species, the organic matter input to the soil decomposer system, and hence, it can alter soil microbial community and key ecosystem functions it performs. In this study, we compared the potential effect of different forest management, coppice and high forest, on soil microbial functional diversity, enzyme activities and chemical-physical soil properties in two forests, turkey oak and beech, during summer and autumn. We hypothesized that coppicing influences soil microbial functional diversity with an overall decrease. Contrary to our hypothesis, in summer, the functional diversity of soil microbial community was higher in both coppice forests, suggesting a resilience response of the microbial communities in the soil after tree cutting, which occurred 15-20 years ago. In beech forest under coppice management, a higher content of soil organic matter (but also of soil recalcitrant and stable organic carbon) compared to high forest can explain the higher soil microbial functional diversity and metabolic activity. In turkey oak forest, although differences in functional diversity of soil microbial community between management were observed, for the other investigated parameters, the differences were mainly linked to seasonality. The findings highlight that the soil organic matter preservation depends on the type of forest, but the soil microbial community was able to recover after about 15 years from coppice intervention in both forest ecosystems. Thus, the type of management implemented in these forest ecosystems, not negatively affecting soil organic matter pool, preserving microbial community and potentially soil ecological functions, is sustainable in a scenario of climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213729PMC
http://dx.doi.org/10.1007/s00248-024-02402-2DOI Listing

Publication Analysis

Top Keywords

soil microbial
32
microbial community
24
functional diversity
20
organic matter
16
soil
15
turkey oak
12
microbial functional
12
soil organic
12
microbial
10
forest
9

Similar Publications

Dolomite dissolution, pH neutralization, and potentially toxic element immobilization in stormwater bioretention beds.

Sci Total Environ

January 2025

Temple University, Department of Civil and Environmental Engineering, 1947 North 12(th) Street, Philadelphia, PA 19122, United States. Electronic address:

The importance of pH in stormwater bioretention beds cannot be overstated since it impacts plant and microbial populations and removal of potentially toxic elements (PTEs) from stormwater runoff. This study investigated the effects of dolomite amendment on pH neutralization and subsequent PTE immobilization in bioretention media. To assess dolomite dissolution, pH neutralization, and PTE immobilization, engineered bioretention media was amended with different dolomite ratios and samples of dolomite-amended media were collected from two bioretention beds, one and two months after installation.

View Article and Find Full Text PDF

Occurrence and bioaccumulation of organophosphate flame retardants in high-altitude regions: A comprehensive field survey in Qinghai Province, China.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.

Organophosphate flame retardants (OPFRs) are a class of substances that pose potential risks to human health and ecosystems due to their large-scale production, wide range of applications, and ubiquitous presence in the environment. With their potential for long-range atmospheric transport (LRAT), OPFR pollution in high-altitude areas has become an increasing concern. Herein, a general pretreatment method for OPFRs across various sample matrices was established and combined with gas chromatography-mass spectrometry (GC-MS), utilizing a programmed temperature ramp in the vaporization chamber to enable high-throughput detection of OPFRs in various environmental matrices.

View Article and Find Full Text PDF

Accelerating electron transfer reduces CH and CO emissions in paddy soil.

J Environ Manage

January 2025

Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China. Electronic address:

As an accelerated electron transfer device, the influence of microbial electrochemical snorkel (MES) on soil greenhouse gas production remains unclear. Electron transport is the key to methane production and denitrification. We found that the NO amount of the MES treatment was comparable to the control however the cumulative CO and CH emissions were reduced by 50% and 41%, respectively.

View Article and Find Full Text PDF

Overgrazing is the primary human-induced cause of soil degradation in the Caatinga biome, intensely threatening lands vulnerable to desertification. Grazing exclusion, a simple and cost-effective practice, could restore soils' ecological functions. However, comprehensive insights into the effects of overgrazing and grazing exclusion on Caatinga soils' multifunctionality are lacking.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how adding nitrogen fertilizers affects the remobilization of cadmium in rice fields, highlighting increased cadmium levels in rice due to ammonia nitrogen (NH-N) compared to nitrogen (NO-N).
  • Organic acids secreted by rice roots, particularly under NH-N treatment, were found to play a significant role in increasing soluble cadmium content and impacting microbial community functions.
  • The research suggests a complex interaction between nutrient application, cadmium levels, and microbial dynamics that could elevate cadmium exposure through rice consumption.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!