Compounds originating from animal husbandry can pollute surface water through the application of manure to soil. Typically, grab sampling is employed to detect these residues, which only provides information on the concentration at the time of sampling. To better understand the emission patterns of these compounds, we utilized passive samplers in surface water to collect data at eight locations in a Dutch agricultural region, during different time intervals. As a passive sampler, we chose the integrative-based Speedisk® hydrophilic DVB. In total, we targeted 46 compounds, among which 25 antibiotics, three hormones, nine antiparasitics, and nine disinfectants. From these 46 compounds, 22 compounds accumulated in passive samplers in amounts above the limit of quantification in at least one sampling location. Over the 12-week deployment period, a time integrative uptake pattern was identified in 53% of the examined cases, with the remaining 47% not displaying this behavior. The occurrences without this behavior were primarily associated with specific location, particularly the most upstream location, or specific compounds. Our findings suggest that the proposed use of passive samplers, when compared in this limited context to traditional grab sampling, may provide enhanced efficiency and potentially enable the detection of a wider array of compounds. In fact, a number of compounds originating from animal husbandry activities were quantified for the first time in Dutch surface waters, such as flubendazole, florfenicol, and tilmicosine. The set-up of the sampling campaign also allowed to distinguish between different pollution levels during sampling intervals on the same location. This aspect gains particular significance when considering the utilization of different compounds on various occasions, hence, it has the potential to strengthen ongoing monitoring and mitigation efforts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213807 | PMC |
http://dx.doi.org/10.1007/s10661-024-12818-5 | DOI Listing |
J Appl Biomater Funct Mater
January 2025
Faculty of Dentistry, Department of Periodontics, Complutense University of Madrid, Madrid, Spain.
Peri-implant diseases, such as peri-implantitis, affect up to 47% of dental implant recipients, primarily due to biofilm formation. Current decontamination methods vary in efficacy, prompting interest in polymeric nanoparticles (NPs) for their antimicrobial and protein-specific cleaning properties. This study evaluated the efficacy of polymeric nanoparticles (NPs) in decontaminating titanium dental implants by removing proteinaceous pellicle layers and resisting recontamination.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
The stomatal phenotype is a crucial microscopic characteristic of the leaf surface, and modulating the stomata of maize leaves can enhance photosynthetic carbon assimilation and water use efficiency, thereby playing a vital role in maize yield formation. The evolving imaging and image processing technologies offer effective tools for precise analysis of stomatal phenotypes. This study employed Jingnongke 728 and its parental inbred to capture stomatal images from various leaf positions and abaxial surfaces during key reproductive stages using rapid scanning electron microscopy.
View Article and Find Full Text PDFJACS Au
January 2025
Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.
Slow mass transfer processes between inert emerging contaminants (ECs) and dissolved oxygen (DO) limit natural water self-purification; thus, excessive energy consumption is necessary to achieve ECs removal, which has become a longstanding global challenge. Here, we propose an innovative water self-purification expansion strategy by constructing asymmetric surfaces that could modulate trace HO as trigger rather than oxidant to bridge a channel between inert ECs and natural dissolved oxygen, achieved through a dual-reaction-center (DRC) catalyst consisting of Cu/Co lattice-substituted ZnO nanorods (CCZO-NRs). During water purification, the bond lengths of emerging contaminants (ECs) adsorbed on the asymmetric surface were stretched, and this stretching was further enhanced by HO mediation, resulting in a significant reduction of bond-breaking energy barriers.
View Article and Find Full Text PDFJACS Au
January 2025
School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
The synthesis of high-performance catalysts for volatile organic compounds (VOCs) degradation under humid conditions is essential for their practical industrial application. Herein, a codoping strategy was adopted to synthesize the N-CoO-C catalyst with N, C codoping for low-temperature ethyl acetate (EA) degradation under humid conditions. Results showed that N-CoO-C exhibited great catalytic activity ( = 177 °C) and water resistance (5.
View Article and Find Full Text PDFACS Appl Energy Mater
January 2025
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Electrolysis of impure water (such as seawater) has recently garnered research interest as it may enable hydrogen production at reduced costs. However, the tendency of impurity ions and other species to degrade electrocatalysts and membranes within an electrolyzer is a serious challenge. Here, we investigate the effects of copper impurities of varying concentrations on the hydrogen evolution reaction (HER) using platinum electrocatalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!