A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Concave Gold Nanocubes Exhibit Growth-Etching Behavior: Unexpected Morphological Transformations. | LitMetric

Chemical equilibrium stands as a fundamental principle governing the dynamics of chemical systems. However, it may become intricate when it refers to nanomaterials because of their unique properties. Here, we invesitigated concave gold nanocubes (CGNs) subjected to an akaline Au/HO solution, which exhibit both etching and growth in a monotonic solution. When CGNs were subjected to an increasingly alkaline Au/HO solution, their dimensions increased from 107 to 199 nm and then decreased to 125 nm. Transmission electron microscopy (TEM) demonstrated that their morphology undergoes intricate alternations from concave to mutibranch and finally to concave again. Real-time ultraviolet-visible spectroscopy and time-dependent TEM also demonstrated reduction first and then oxidation in one solution. Among the nanomaterials, the obtained carpenterworm-like gold nanoparticles revealed the best catalytic performance in -nitrophenol reduction by NaBH, with a chemical rate that continues to increase until the reaction reaches completion. Growth leading to atomic dislocation, distortion, and exposure on nanoparticles and the redox of HO plausibly account for the further etching due to the Ostwald ripening effect. Our study may spur more interest in the tuning of the properties, engineering, investigation, and design of new kinds of nanomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.4c02346DOI Listing

Publication Analysis

Top Keywords

concave gold
8
gold nanocubes
8
cgns subjected
8
au/ho solution
8
tem demonstrated
8
concave
4
nanocubes exhibit
4
exhibit growth-etching
4
growth-etching behavior
4
behavior unexpected
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!