A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Revisiting the Roles of Catalytic Residues in Human Ornithine Transcarbamylase. | LitMetric

Revisiting the Roles of Catalytic Residues in Human Ornithine Transcarbamylase.

Biochemistry

Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States.

Published: July 2024

Human ornithine transcarbamylase (hOTC) is a mitochondrial transferase protein involved in the urea cycle and is crucial for the conversion of toxic ammonia to urea. Structural analysis coupled with kinetic studies of rat, bovine, and other transferase proteins has identified residues that play key roles in substrate recognition and conformational changes but has not provided direct evidence for all of the active residues involved in OTC function. Here, computational methods were used to predict the likely active residues of hOTC; the function of these residues was then probed with site-directed mutagenesis and biochemical characterization. This process identified previously reported active residues, as well as distal residues that contribute to activity. Mutation of active site residue D263 resulted in a substantial loss of activity without a decrease in protein stability, suggesting a key catalytic role for this residue. Mutation of predicted second-layer residues H302, K307, and E310 resulted in significant decreases in enzymatic activity relative to that of wild-type (WT) hOTC with respect to l-ornithine. The mutation of fourth-layer residue H107 to produce the hOTC H107N variant resulted in a 66-fold decrease in catalytic efficiency relative to that of WT hOTC with respect to carbamoyl phosphate and a substantial loss of thermal stability. Further investigation identified H107 and to a lesser extent E98Q as key residues involved in maintaining the hOTC quaternary structure. This work biochemically demonstrates the importance of D263 in hOTC catalytic activity and shows that residues remote from the active site also play key roles in activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256359PMC
http://dx.doi.org/10.1021/acs.biochem.4c00206DOI Listing

Publication Analysis

Top Keywords

active residues
12
residues
10
human ornithine
8
ornithine transcarbamylase
8
play key
8
key roles
8
residues involved
8
active site
8
substantial loss
8
hotc respect
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!