Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that the cell invasion and migration assay data shown in Fig. 6 and the cell proliferation assay experiments shown in Fig. 2 were strikingly similar to data appearing in different form in other articles by different authors; furthermore, in Fig. 2, for the '10 mM metformin' experiment, certain of the glioma cells appeared to be strikingly similar to other cells contained within the same data panels. Owing to the fact that the contentious data in the above article had already been published elsewhere or were under consideration for publication prior to its submission to , and owing to concerns with the authenticity of certain of the data, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 20: 887‑894, 2019; DOI: 10.3892/mmr.2019.10369].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222912 | PMC |
http://dx.doi.org/10.3892/mmr.2024.13271 | DOI Listing |
Cardiovasc Diabetol
December 2024
Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration.
View Article and Find Full Text PDFCancer Cell Int
December 2024
Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
Background: Cutaneous melanoma is one of the most invasive and lethal skin malignant tumors. Compared to primary melanoma, metastatic melanoma (MM) presents poorer treatment outcomes and a higher mortality rate. The tumor microenvironment (TME) plays a critical role in MM progression and immunotherapy resistance.
View Article and Find Full Text PDFCancer Cell Int
December 2024
Department of General Surgery, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China.
Insulin-like growth factor II mRNA-binding proteins (IGF2BPs), a family of RNA-binding proteins, are pivotal in regulating RNA dynamics, encompassing processes such as localization, metabolism, stability, and translation through the formation of ribonucleoprotein complexes. First identified in 1999 for their affinity to insulin-like growth factor II mRNA, IGF2BPs have been implicated in promoting tumor malignancy behaviors, including proliferation, metastasis, and the maintenance of stemness, which are associated with unfavorable outcomes in various cancers. Additionally, non-coding RNAs (ncRNAs), particularly long non-coding RNAs, circular RNAs, and microRNAs, play critical roles in cancer progression through intricate protein-RNA interactions.
View Article and Find Full Text PDFMol Med
December 2024
Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.
Background: Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension.
View Article and Find Full Text PDFAm J Pathol
December 2024
Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA. Electronic address:
Tissue inhibitors of metalloproteinases (TIMPs) modulate extracellular matrix (ECM) remodeling for maintaining homeostasis and promoting cell migration and proliferation. Pathological conditions can alter TIMP homeostasis and aggravate disease progression. The roles of TIMPs have been studied in tissue-related disorders; however, their contributions to tissue repair during corneal injury are undefined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!