Motivation: In drug discovery, it is crucial to assess the drug-target binding affinity (DTA). Although molecular docking is widely used, computational efficiency limits its application in large-scale virtual screening. Deep learning-based methods learn virtual scoring functions from labeled datasets and can quickly predict affinity. However, there are three limitations. First, existing methods only consider the atom-bond graph or one-dimensional sequence representations of compounds, ignoring the information about functional groups (pharmacophores) with specific biological activities. Second, relying on limited labeled datasets fails to learn comprehensive embedding representations of compounds and proteins, resulting in poor generalization performance in complex scenarios. Third, existing feature fusion methods cannot adequately capture contextual interaction information.
Results: Therefore, we propose a novel DTA prediction method named HeteroDTA. Specifically, a multi-view compound feature extraction module is constructed to model the atom-bond graph and pharmacophore graph. The residue concat graph and protein sequence are also utilized to model protein structure and function. Moreover, to enhance the generalization capability and reduce the dependence on task-specific labeled data, pre-trained models are utilized to initialize the atomic features of the compounds and the embedding representations of the protein sequence. A context-aware nonlinear feature fusion method is also proposed to learn interaction patterns between compounds and proteins. Experimental results on public benchmark datasets show that HeteroDTA significantly outperforms existing methods. In addition, HeteroDTA shows excellent generalization performance in cold-start experiments and superiority in the representation learning ability of drug-target pairs. Finally, the effectiveness of HeteroDTA is demonstrated in a real-world drug discovery study.
Availability And Implementation: The source code and data are available at https://github.com/daydayupzzl/HeteroDTA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211825 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btae240 | DOI Listing |
Sci Rep
January 2025
Department of Electrical Power, Adama Science and Technology University, Adama, 1888, Ethiopia.
Although the Transformer architecture has established itself as the industry standard for jobs involving natural language processing, it still has few uses in computer vision. In vision, attention is used in conjunction with convolutional networks or to replace individual convolutional network elements while preserving the overall network design. Differences between the two domains, such as significant variations in the scale of visual things and the higher granularity of pixels in images compared to words in the text, make it difficult to transfer Transformer from language to vision.
View Article and Find Full Text PDFComput Biol Med
January 2025
Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:
- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.
View Article and Find Full Text PDFWaste Manag
January 2025
Chair of Waste Processing Technology and Waste Management, Montanuniversitaet Leoben, Leoben, Austria. Electronic address:
Global waste generation is projected to reach 3.40 billion tons by 2050, necessitating improved waste sorting for effective recycling and progress toward a circular economy. Achieving this transformation requires higher sorting intensity through intensified processes, increased efficiency, and enhanced yield.
View Article and Find Full Text PDFNeural Netw
January 2025
Luca Healthcare R&D, Shanghai, 200000, China. Electronic address:
Due to data privacy and storage concerns, Source-Free Unsupervised Domain Adaptation (SFUDA) focuses on improving an unlabelled target domain by leveraging a pre-trained source model without access to source data. While existing studies attempt to train target models by mitigating biases induced by noisy pseudo labels, they often lack theoretical guarantees for fully reducing biases and have predominantly addressed classification tasks rather than regression ones. To address these gaps, our analysis delves into the generalisation error bound of the target model, aiming to understand the intrinsic limitations of pseudo-label-based SFUDA methods.
View Article and Find Full Text PDFIn the context of Chinese clinical texts, this paper aims to propose a deep learning algorithm based on Bidirectional Encoder Representation from Transformers (BERT) to identify privacy information and to verify the feasibility of our method for privacy protection in the Chinese clinical context. We collected and double-annotated 33,017 discharge summaries from 151 medical institutions on a municipal regional health information platform, developed a BERT-based Bidirectional Long Short-Term Memory Model (BiLSTM) and Conditional Random Field (CRF) model, and tested the performance of privacy identification on the dataset. To explore the performance of different substructures of the neural network, we created five additional baseline models and evaluated the impact of different models on performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!