AI Article Synopsis

  • Spinal cord injury (SCI) is a critical condition that leads to significant disability and high mortality, influenced by complex biological processes.
  • *MicroRNA (miRNA) is crucial in SCI as it regulates various responses, including inflammation, oxidative stress, nerve regeneration, and cell death.
  • *The paper discusses how miRNA expression changes post-SCI and explores the potential of miRNA-targeted therapies to improve basic and clinical research on the condition.

Article Abstract

Spinal cord injury (SCI) is a serious central nervous system disease with high disability and mortality rates and complex pathophysiologic mechanisms. MicroRNA (miRNA), as a kind of non-coding RNA, plays an important role in SCI. miRNA is involved in the regulation of inflammatory response, oxidative stress, axonal regeneration, and apoptosis after SCI, and interacts with long non-coding RNA (lncRNA) and circular RNA (circRNA) to regulate the pathophysiological process of SCI. This paper summarizes the changes in miRNA expression after SCI, and reviews the targeting mechanism of miRNA in SCI and the current research status of miRNA-targeted drugs to provide new targets and new horizons for basic and clinical research on SCI.

Download full-text PDF

Source

Publication Analysis

Top Keywords

spinal cord
8
cord injury
8
non-coding rna
8
sci
7
progress microrna
4
microrna spinal
4
injury spinal
4
injury sci
4
sci serious
4
serious central
4

Similar Publications

Introduction: Patients with psoriasis (PsO) and permanent spinal cord injuries (SCI) resulting in paraplegia and tetraplegia may experience a higher rate of infections compared to patients with PsO without SCI. It can result in further challenges for therapeutic management with immunosuppressants (biological and non-biological treatments). Thus,  we aimed to evaluate the rate of infections in patients with PsO and SCI treated with systemic immunosuppressants.

View Article and Find Full Text PDF

Identification of candidate genes involved in Zika virus-induced reversible paralysis of mice.

Sci Rep

January 2025

Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84321-5600, USA.

Zika virus (ZIKV) causes a variety of peripheral and central nervous system complications leading to neurological symptoms such as limb weakness. We used a mouse model to identify candidate genes potentially involved in causation or recovery from ZIKV-induced acute flaccid paralysis. Using Zikv and Chat chromogenic and fluorescence in situ RNA hybridization, electron microscopy, immunohistochemistry, and ZIKV RT-qPCR, we determined that some paralyzed mice had infected motor neurons, but motor neurons are not reduced in number and the infection was not present in all paralyzed mice; hence infection of motor neurons were not strongly correlated with paralysis.

View Article and Find Full Text PDF

Association of systemic inflammatory markers with white matter hyperintensities and microstructural injury: an analysis of UK Biobank data.

J Psychiatry Neurosci

January 2025

From the Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Qiao, Zhao, Cong, Y. Li, Tian, Yang, Cao, Su); the School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China (Zhu); the Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (P. Li).

Background: White matter damage is closely associated with cognitive and psychiatric symptoms and is prevalent in cerebral small vessel disease (CSVD); although the pathophysiological mechanisms involved in CSVD remain elusive, inflammation plays a crucial role. We sought to investigate the relationship between systemic inflammation markers and imaging markers of CVSD, namely white matter hyperintensity (WMH) and microstructural injury.

Methods: We conducted a study involving both cross-sectional and longitudinal data from the UK Biobank Cohort.

View Article and Find Full Text PDF

Naturally occurring, rostrally conjoining chicken twins attempt to make a forebrain.

Dev Biol

January 2025

Institute of Life Sciences and Health (ILSH), School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK. Electronic address:

Conjoined twinning is a special case of monozygotic, monoamniotic twinning. Human conjoined twinning, and vertebrate conjoined twinning in general, is a very rare phenomenon. It has been suggested that the risk of conjoined twinning increases with some medication and upon assisted reproduction.

View Article and Find Full Text PDF

Background: Cervical spondylotic myelopathy (CSM) is a leading cause of spinal cord dysfunction in adults, often progressing silently. Static MRI is the standard imaging tool but may miss compression caused by neck movement. Dynamic MRI, by capturing flexion and extension views, provides a clearer picture of spinal cord compression, aiding surgical planning and improving outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!