Background: A simple ambulatory measure of cardiac function could be helpful for monitoring heart failure patients.

Objectives: The purpose of this paper was to determine whether a novel pulse waveform analysis using data obtained by our developed multisensor-ambulatory blood pressure monitoring (ABPM) device, the 'Sf/Am' ratio, is associated with echocardiographic left ventricular ejection fraction (LVEF).

Methods: Multisensor-ABPM was conducted twice at baseline in 20 heart failure (HF) patients with HF-reduced LVEF or HF-preserved LVEF (median age 66 years, male 65%) and over a 6- to 12-month follow-up after patient-tailored treatment. We assessed the changes in the pulse waveform index Sf/Am and LVEF that occurred between the baseline and follow-up. The Sf/Am consists of the area of the ejection part in the square forward wave (Sf) and the amplitude of the measured wave (Am). We divided the patients into the recovered (n = 11) and not-recovered (n = 9) groups defined by a ≥10% increase in LVEF.

Results: Although the ambulatory BP levels and variabilities did not change in either group, the Sf/Am increased significantly in the recovered group (baseline 21.4 ± 4.5; follow-up, 25.6 ± 3.7,  = 0.004). The not-recovered group showed no difference between the baseline and follow-up. The follow-up/baseline Sf/Am ratio was significantly associated with the LVEF ratio ( = 0.469,  = 0.037). The Sf/Am was significantly correlated with the LVEF in overall measurements (n = 40,  = 0.491,  = 0.001).

Conclusions: These results demonstrated that a novel noninvasive pulse waveform index, the Sf/Am measured by multisensor-ABPM is associated with LVEF. The Sf/Am may be useful for estimating cardiac function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11198410PMC
http://dx.doi.org/10.1016/j.jacadv.2023.100737DOI Listing

Publication Analysis

Top Keywords

pulse waveform
16
cardiac function
12
novel pulse
8
blood pressure
8
pressure monitoring
8
heart failure
8
ratio associated
8
waveform sf/am
8
baseline follow-up
8
associated lvef
8

Similar Publications

We report a nonlinear terahertz (THz) detection device based on a metallic bull's-eye plasmonic antenna. The antenna, fabricated with femtosecond laser direct writing and deposited on a nonlinear gallium phosphide (GaP) crystal, focuses incoming THz waveforms within the sub-wavelength bull's eye region to locally enhance the THz field. Additionally, the plasmonic structure minimizes diffraction effects allowing a relatively long interaction length between the transmitted THz field and the co-propagating near-infrared gating pulse used in an electro-optic sampling configuration.

View Article and Find Full Text PDF

Utilising terahertz pulsed imaging to analyse the anhydrous-to-hydrate transformation of excipients during immediate release film coating hydration.

Int J Pharm

December 2024

Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK. Electronic address:

Pharmaceutical tablets are routinely film-coated to improve appearance, reduce medication errors and enhance storage stability. Terahertz pulsed imaging (TPI) can be utilised to study the liquid penetration into the porous tablet matrix in real time. Using polymer-coated flat-faced tablets with anhydrous lactose or mannitol, we show that when the tablet matrix contains anhydrous material, the anhydrous form transforms to the solid-state hydrate form in the tablet core while the immediate release coating dissolves.

View Article and Find Full Text PDF

Full-color dynamic volumetric displays with tunable upconversion emission from RE-doped glasses (RE = Ho, Tm, Nd, Yb) under NIR laser excitation.

Light Sci Appl

January 2025

Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgical and Materials Engineering, Glass Research and Development Laboratory, Istanbul, 34220, Türkiye.

Three-dimensional (3D) imaging technology holds immense potential across various high-tech applications; however, current display technologies are hindered by limitations such as restricted viewing angles, cumbersome headgear, and limited multi-user accessibility. To address these challenges, researchers are actively exploring new materials and techniques for 3D imaging. Laser-based volumetric displays (VDs) offer a promising solution; nonetheless, existing screen materials fall short in meeting key requirements for long-term durability, full-color operation, and scalability.

View Article and Find Full Text PDF

A rare phenomenon involving ventricular separation: a case report.

BMC Cardiovasc Disord

December 2024

Department of Electrocardiology, The Third Affiliated Hospital of Wenzhou Medical University, No.108 WansongRoad, Wenzhou, 325200, People's Republic of China.

Background: Ventricular separation is a multipart, extensive disease of the heart that hinders the electrical conduction of the cardiac system ventricular muscle, causing a bidirectional conduction block. The occurrence of ventricular separation suggests that the myocardium is in a state of severe ischemia, and the prognosis is generally poor. Herein, we present arescue case in which the extremely rare phenomenon of ventricular separation developed and was documented in realtime.

View Article and Find Full Text PDF

We report on continuous high-harmonic generation (HHG) at 1 kHz repetition rate from a liquid-sheet plasma mirror driven by relativistic-intensity near-single-cycle light transients. Through precise control of both the surface plasma density gradient and the driving light waveform, we can produce highly stable and reproducible extreme ultraviolet spectral quasi-continua, expected to correspond to the generation of stable kHz-trains of isolated attosecond pulses in the time domain. This confirms the exciting potential of liquid-sheet targets as one of the building blocks of future high-power attosecond lasers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!