EVs released by adipose derived stem cells (ADSCs) have shown promise as a therapeutic for tissue repair because of their purported immune-regulatory properties. Extracellular vesicles (EVs) from ADSCs could be beneficial in improving graft retention rates for autologous fat grafting (AFG) post-mastectomy as, currently, grafted tissue rates are variable. Enriching grafted tissue with ADSC-EVs may improve retention rates by modulating macrophages resident within both the breast and lipoaspirate. We aimed to identify key macrophage phenotypes that are modulated by ADSC-EVs in vitro. ADSCs were isolated from lipoaspirates of women undergoing AFG and characterised by flow cytometry and differentiation potential. ADSC-EVs were isolated from culture media and characterised by tuneable resistive pulse sensing, transmission electron microscopy and Western blot. Primary monocyte-derived macrophages were polarized to an M1-like (GM-CSF, IFNγ), M2-like phenotype (M-CSF, IL-4) or maintained (M0-like; M-CSF) and ADSC-EVs were co-cultured with macrophages for 48 h. Flow cytometry and high-dimensional analysis clustered macrophages post co-culture. A manual gating strategy was generated to recapitulate these clusters and was applied to a repeat experimental run. Both runs were analysed to examine the prevalence of each cluster, representing a unique macrophage phenotype, with and without ADSC-EVs. Following the addition of ADSC-EVs, M0-like macrophages demonstrated a reciprocal shift of cell distribution from a cluster with a 'high inflammatory profile' (CD36CD206CD86; 16.5 ± 7.0%; < 0.0001) to a cluster with a 'lower inflammatory profile' (CD36CD86+; 35 ± 21.5%; < 0.05). M1-like macrophages shifted from a cluster with a 'high inflammatory profile' (CD206CD11bCD36CD163; 26.1 ± 9.4%; = 0.0024) to a 'lower inflammatory profile' (CD206CD11bCD36; 72.8 ± 8.7%; = 0.0007). There was no shift in M2-like clusters following ADSC-EV treatment. ADSC-EVs are complex regulators of macrophage phenotype that can shift macrophages away from a heightened pro-inflammatory state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11080877 | PMC |
http://dx.doi.org/10.1002/jex2.104 | DOI Listing |
Cytotherapy
December 2024
Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Technology Innovation Center of Oral Health, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, 050017, China. Electronic address:
Objective: This study aimed to evaluate the potential of combining allogeneic adipose-derived mesenchymal stem cells (ADSCs) with autologous concentrated growth factors (CGF) to enhance the repair of mandibular defects in rabbits.
Methods: Rabbit ADSCs were characterized using flow cytometry, identifying CD73, CD90, and CD105 as surface markers, while Alizarin Red Staining confirmed osteogenic differentiation, showing substantial mineralized deposits by day 21. A total of 24 New Zealand white rabbits were divided into four groups: BLANK (control group), CGF, ADSCs, and ADSCs/CGF.
Pharmaceutics
December 2024
Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.
The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair.
View Article and Find Full Text PDFPharmaceutics
November 2024
Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan.
Extracellular vesicles (EVs), including exosomes, are promising pharmaceutical modalities. They are purified from cell culture supernatant; however, the preparation may contain EVs with the desired therapeutic effects and different types of EVs, lipoproteins, and soluble proteins. Evaluating the composition of particulate impurities and the levels of protein impurities in final preparations is critical for quality control.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratorio Universitario de Análisis Clínicos e Investigación, Universidad de Sonora (LUACI) Departamento de Ciencias Químico-Biológicas y Agropecuarias, Campus Navojoa. Lázaro Cárdenas del Río #100, CP 85880 Navojoa, Sonora, Mexico.
Sucralose, a commonly nonnutritive sweetener used in daily products of habitual diet, is related to impairing the gut microbiome by disrupting inflammatory response, promoting weight gain by increasing adipose tissue and promoting chronic inflammatory processes. Considering the impact of sucralose in the development of metabolic diseases, in this work, we focused on the impact of sucralose on the adipocyte differentiation process to determine if sucralose can promote adipogenesis and increase adipose tissue depots in PCS 210 010 human preadipocytes cell line. Sucralose at 25 (S25) and 100 ng/µL (S100) concentrations were tested against control with no edulcorant (NS) during the adipocyte differentiation process at 48 h and 96 h.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, 28049 Madrid, Spain.
Circulating microRNAs (miRNAs), especially transported by extracellular vesicles (EVs), have recently emerged as major new participants in interorgan communication, playing an important role in the metabolic coordination of our tissues. Among these, adipose tissue displays an extraordinary ability to secrete a vast list of EV-carried miRNAs into the circulation, representing new hormone-like factors. Despite the limitations of current methodologies for the unequivocal identification of the origin and destination of EV-carried miRNAs in vivo, recent investigations clearly support the important regulatory role of adipose-derived circulating miRNAs in shaping the metabolism and function of other tissues including the liver, muscle, endocrine pancreas, cardiovascular system, gastrointestinal tract, and brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!