Revisiting the reaction pathways for phospholipid hydrolysis catalyzed by phospholipase A2 with QM/MM methods.

Chem Sci

LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal

Published: June 2024

Secreted phospholipase A2 (sPLA2) is a Ca-dependent, widely distributed enzyme superfamily in almost all mammalian tissues and bacteria. It is also a critical component of the venom of nearly all snakes, as well as many invertebrate species. In non-venomous contexts, sPLA2 assumes significance in cellular signaling pathways by binding cell membranes and catalyzing ester bond hydrolysis at the sn-2 position of phospholipids. Elevated levels of GIIA sPLA2 have been detected in the synovial fluid of arthritis patients, where it exhibits a pro-inflammatory function. Consequently, identifying sPLA2 inhibitors holds promise for creating highly effective pharmaceutical treatments. Beyond arthritis, the similarities among GIIA sPLA2s offer an opportunity for developing treatments against snakebite envenoming, the deadliest neglected tropical disease. Despite decades of study, the details of PLA2 membrane-binding, substrate-binding, and reaction mechanism remain elusive, demanding a comprehensive understanding of the sPLA2 catalytic mechanism. This study explores two reaction mechanism hypotheses, involving one or two water molecules, and distinct roles for the Ca cofactor. Our research focuses on the human synovial sPLA2 enzyme bound to lipid bilayers of varying phospholipid compositions, and employing adiabatic QM/MM and QM/MM MD umbrella sampling methods to energetically and geometrically characterize the structures found along both reaction pathways. Our studies demonstrate the higher frequency of productive conformations within the single-water pathway, also revealing a lower free energy barrier for hydrolyzing POPC. Furthermore, we observe that the TS of this concerted one-step reaction closely resembles transition state geometries observed in X-ray crystallography complexes featuring high-affinity transition state analogue inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11206408PMC
http://dx.doi.org/10.1039/d4sc02315cDOI Listing

Publication Analysis

Top Keywords

reaction pathways
8
reaction mechanism
8
transition state
8
spla2
6
revisiting reaction
4
pathways phospholipid
4
phospholipid hydrolysis
4
hydrolysis catalyzed
4
catalyzed phospholipase
4
phospholipase qm/mm
4

Similar Publications

Temperature-dependent pathways in carbon dioxide electroreduction.

Sci Bull (Beijing)

January 2025

Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. Electronic address:

Temperature affects both the thermodynamics of intermediate adsorption and the kinetics of elementary reactions. Despite its extensive study in thermocatalysis, temperature effect is typically overlooked in electrocatalysis. This study investigates how electrolyte temperature influences CO electroreduction over Cu catalysts.

View Article and Find Full Text PDF

Hypochlorous acid (HClO) is a well-known inflammatory signaling molecule, while lipid droplets (LDs) are dynamic organelles closely related to inflammation. Using organic small-molecule fluorescence imaging technology to target LDs for precise monitoring of HClO is one of the most effective methods for diagnosing inflammation-related diseases. A thorough investigation of how probes detect biological markers and the influencing factors can aid in the design of probe molecules, the selection of high-performance tools, and the accuracy of disease detection.

View Article and Find Full Text PDF

Background: The early stages of tumor bone metastasis are closely associated with changes in the vascular niche of the bone microenvironment, and abnormal angiogenesis accelerates tumor metastasis and progression. However, the effects of lung adenocarcinoma (LUAD) cells reprogrammed by the bone microenvironment on the vascular niche within the bone microenvironment and the underlying mechanisms remain unclear. This study investigates the effects and mechanisms of LUAD cells reprogrammed by the bone microenvironment on endothelial cells and angiogenesis, providing insights into the influence of tumor cells on the vascular niche within the bone microenvironment.

View Article and Find Full Text PDF

Aims: Circular RNA forkhead box O3 (circFOXO3) is crucial in regulating inflammation in lung and heart injuries. However, its role in periodontitis remains unclear. We sought to elucidate the effects of circFOXO3 on periodontitis progression and related molecular mechanisms.

View Article and Find Full Text PDF

Dahuang-Gancao Decoction Ameliorates Testosterone-Induced Androgenetic Alopecia in Mice.

J Ethnopharmacol

January 2025

Eye School of Chengdu University of Traditional Chinese Medicine. Ineye Hospital of Chengdu University of Traditional Chinese Medicine, KeyLaboratory of Sichuan Province Ophthalmopathy Prevention & Cureand Visual Function Protection with Traditional Chinese Medicine Laboratory. Electronic address:

Ethnopharmacological Relevance: Dahuang-Gancao decoction (DGD) is a traditional Chinese medicinal formula that is recorded in the Synopsis of the Golden Chamber, and is widely used to treat damp-heat in the body. Since the pathological factors of androgenetic alopecia (AGA) also reflect damp-heat blockage, DGD has great potential for the treatment of AGA and has been used effectively in clinical practice.

Aim Of The Study: The aim of the study was to investigate whether external application of DGD could promote the activation and proliferation of hair follicle stem cells (HFSCs) and improve AGA through the Wnt/β-catenin pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!