Rechargeable Li-CO batteries are deemed to be attractive energy storage systems, as they can effectively inhale and fix carbon dioxide and possess an extremely high energy density. Unfortunately, the irreversible decomposition of the insoluble and insulating LiCO results in awful electrochemical performance and inferior energy efficiency of Li-CO batteries. Furthermore, the low energy efficiency will exacerbate the extra waste of resources. Therefore, it is vital to design novel and efficient catalysts to enhance the battery performance. Herein, a facile, one-step strategy is introduced to design cross-linked, ultrathin KMnO nanoflowers combined with CNTs (KMnO/CNT) as a highly efficient cathode for Li-CO batteries. Impressively, the Li-CO battery based on the KMnO/CNT cathode achieves a low overpotential (1.05 V) and a high average energy efficiency (87.95%) at a current density of 100 mA g. Additionally, the KMnO/CNT cathode can steadily run for over 100 cycles (overpotential < 1.20 V). Moreover, a low overpotential of 1.47 V can be obtained even at a higher current density of 1000 mA g, indicating the superior rate performance of KMnO/CNT. This strategy offers new insight and guidance for the development of low-cost and high-performance Li-CO batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11206224 | PMC |
http://dx.doi.org/10.1039/d4sc01799d | DOI Listing |
Waste Manag
December 2024
College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
To alleviate the energy crisis and control environmental pollution raised by spent lithium-ion batteries (LIBs), the development of efficient and economic methods for their recycling is crucial for sustainable development of new energy industry. Herein, a combined pyro - hydrometallurgical process was adopted for recovery of valuable metal elements for spent LiNiCoMnO (NCM523). Different from conventional pyrometallurgical methods with high temperature and energy consumption, the NHHSO roasting strategy works at 400 °C and achieves remarkable leaching efficiencies of Li, Co, Mn, and Ni achieved 97.
View Article and Find Full Text PDFWater Res
December 2024
College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China. Electronic address:
The evolution of energy structure and the push for carbon neutrality have triggered an urgent call for lithium-ion batteries (LIBs). However, reclaiming end-of-life LIBs with high purity, high efficiency, and low environmental impact, particularly by eliminating chemical reagent usage and promoting a closed-loop carbon footprint, is challenging. Herein, we proposed a strategy that couples the carbon capture (CC) process with an electrochemically enhanced membrane distillation system (ECMD).
View Article and Find Full Text PDFACS Nano
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China.
MXenes are promising cathodes for Li-CO batteries owing to their high electrical conductivity and efficient CO activation function. However, the effects of adsorption and electronic structures of MXene on the full life cycle of Li-CO batteries have been rarely investigated. Here, we employ a coregulation approach to enhance the adsorption-decomposition of lithium carbonate (LiCO) by introducing Zn and Cl surface groups onto the TiC MXene (Zn-TiCCl) catalyst.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China.
Na-S and K-S batteries, with high-energy density, using naturally more abundant and affordable metals compared with rare resources like Li, Co, and Ni elements, have inspired intense research interest. However, the sulfur cathodes for Na/K storage are plagued by soluble polysulfide shuttling, larger volumetric deformation, and sluggish redox kinetics. Here, we report that a conductive organosulfur polymer microcage, fabricated facilely with the microbe and elemental sulfur as precursors, can effectively address these issues for stable high-capacity Na-S and K-S batteries.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, Republic of Korea.
Li-CO batteries (LCBs) have emerged as promising solutions for energy storage, with the added benefit of contributing to carbon neutrality by capturing and utilizing CO during operation. In this study, a high-performance LCB was developed using a Ge-doped LiAlGeTi (PO) (LAGTP) solid electrolyte, which was synthesized via a solution-based method by doping Ge into NASICON-type LATP. The ionic conductivity of the LAGTP pellets was measured as 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!