Redox-active polymers serving as the active materials in solid-state electrodes offer a promising path toward realizing all-organic batteries. While both cathodic and anodic redox-active polymers are needed, the diversity of the available anodic materials is limited. Here, we predict solid-state structural, ionic, and electronic properties of anodic, phthalimide-containing polymers using a multiscale approach that combines atomistic molecular dynamics, electronic structure calculations, and machine learning surrogate models. Importantly, by combining information from each of these scales, we are able to bridge the gap between bottom-up molecular characteristics and macroscopic properties such as apparent diffusion coefficients of electron transport ( ). We investigate the impact of different polymer backbones and of two critical factors during battery operation: state of charge and polymer swelling. Our findings reveal that the state of charge significantly influences solid-state packing and the thermophysical properties of the polymers, which, in turn, affect ionic and electronic transport. A combination of molecular-level properties (such as the reorganization energy) and condensed-phase properties (such as effective electron hopping distances) determine the predicted ranking of electron transport capabilities of the polymers. We predict for the phthalimide-based polymers and for a reference nitroxide radical-based polymer, finding a 3 orders of magnitude increase in (≈10 cm s) with respect to the reference. This study underscores the promise of phthalimide-containing polymers as highly capable redox-active polymers for anodic materials in all-organic batteries, due to their exceptional predicted electron transport capabilities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200234 | PMC |
http://dx.doi.org/10.1021/jacsau.4c00276 | DOI Listing |
Nanomicro Lett
January 2025
Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology, Jinju, Gyeongnam, 52851, Republic of Korea.
All-solid-state batteries (ASSBs) are pursued due to their potential for better safety and high energy density. However, the energy density of the cathode for ASSBs does not seem to be satisfactory due to the low utilization of active materials (AMs) at high loading. With small amount of solid electrolyte (SE) powder in the cathode, poor electrochemical performance is often observed due to contact loss and non-homogeneous distribution of AMs and SEs, leading to high tortuosity and limitation of lithium and electron transport pathways.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Aarhus University, iNANO, Department of Chemistry, Langelandsgade 140, 8000, Aarhus C, DENMARK.
Solid-state batteries created from abundant elements, such as calcium, may pave the way for cheaper and safer electrical energy storage. Here we report a new type of solid calcium hydridoborate electrolyte, Ca(BH4)2·2NH2CH3, with a high ionic conductivity of σ(Ca2+) ~ 10-5 S cm-1 at T = 70 °C, which is assigned to a relatively open and flexible structure with apolar moieties and weak dihydrogen bonds that facilitate migration of Ca2+ ions in the solid state. The compound display a low electronic conductivity, providing an ionic transport number close to unity (tion = 0.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemical Engineering, POSTECH, Pohang, 37673, Republic of Korea.
Liquid crystals (LCs) are widely used as promising stimuli-responsive materials due to their unique combination of liquid and crystalline properties, providing the capability to sense even molecular-scale events and amplify them into macroscopic optical outputs. However, encoding a high level of selectivity to a specific intermolecular event remains a key challenge, leading to prior studies regarding chemically functionalized LC interfaces. Herein, we propose an integrative strategy to significantly advance the design of chemo-responsive LCs through a deep fundamental understanding on the orientational coupling of LCs with new functional molecules, organic ionic plastic crystals (OIs), presented at LC interfaces.
View Article and Find Full Text PDFLangmuir
January 2025
College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China.
LiFeMnPO (0 < < 1) has a high operating voltage range and theoretical energy density, but its actual capacity decreased due to its low electronic conductivity. To overcome this problem, we successfully prepared LiFeMnPO/C (LFMP/C) with a uniform carbon coating by a one-step solvothermal method using bamboo shavings as the carbon source. The results showed that heating at a reaction temperature of 180 °C for 18 h was the optimal synthesis condition to obtain LFMP/C.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, 226-8501, Japan.
Atomically flat two-dimensional networks of boron are attracting attention as post-graphene materials. An introduction of cations between the boron atomic layers can exhibit unique electronic functions that are not achieved by neutral graphene or its derivatives. In the present study, we propose a synthesis strategy for ion-laminated boron layered materials in a solution phase, which enables the preparation of analogs by changing the alkali-metal species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!