Extracellular vesicles (EVs) released by a variety of cell types have been shown to act as a natural delivery system for bioactive molecules such as RNAs and proteins. EV therapy holds great promise as a safe and cell-free therapy for many immunological and degenerative diseases. However, translation to clinical application is limited by several factors, including insufficient large-scale manufacturing technologies and low yield. We have developed a novel drug delivery platform technology, BioDrone™, based on cell-derived vesicles (CDVs) produced from diverse cell sources by using a proprietary extrusion process. This extrusion technology generates nanosized vesicles in far greater numbers than naturally obtained EVs. We demonstrate that the CDVs are surrounded by a lipid bilayer membrane with a correct membrane topology. Physical, biochemical and functional characterisation results demonstrate the potential of CDVs to act as effective therapeutics. Umbilical cord mesenchymal stem cell (UCMSC)-derived CDVs exhibit a biological activity that is similar to UCMSCs or UCMSC-derived EVs. Lastly, we present the establishment of a GMP-compliant process to allow the production of a large number of UCMSC-CDVs in a reproducible manner. GMP-compliant manufacturing of CDVs will facilitate the preclinical and clinical evaluation of these emerging therapeutics in anti-inflammatory or regenerative medicine. This study also represents a crucial step in the development of this novel drug delivery platform based on CDVs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11080851 | PMC |
http://dx.doi.org/10.1002/jex2.70 | DOI Listing |
Biofabrication
January 2025
Biomedical Engineering and CÚRAM, SFI Research Centre for Medical Devices, University of Galway, School of Engineering, University Road, Galway, Ireland, Galway, H91 TK33, IRELAND.
Despite significant advances in bioprinting technology, current hardware platforms lack the capability for process monitoring and quality control. This limitation hampers the translation of the technology into industrial GMP-compliant manufacturing settings. As a key step towards a solution, we developed a novel bioprinting platform integrating a high-resolution camera for in-situ monitoring of extrusion outcomes during embedded bioprinting.
View Article and Find Full Text PDFBiomed Mater
December 2024
G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis; Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Engesserstr. 4, Freiburg im Breisgau, 79108, GERMANY.
Cell micro-patterning controls cell fate and function and has potential for generating therapeutically usable mesenchymal stromal cell (MSC) populations with precise functions. However, to date, the micro-patterning of human cells in a translational context has been impossible because only ruminant media supplements, e.g.
View Article and Find Full Text PDFCytotherapy
December 2024
Terumo Blood and Cell Technologies, Inc., Lakewood, Colorado, USA.
Background Aims: The need for large-scale production of mesenchymal stromal cell (MSC)-based cellular therapeutics continues to grow around the globe. Manual cell expansion processes can be highly variable between operators, require significant hands-on time from skilled staff and, because of the large number of open manipulation steps required to produce cells in dose-relevant quantities, be prone to greater risk of contamination relative to automated processes. All of these can increase overall production costs and risks to the patient.
View Article and Find Full Text PDFFront Immunol
December 2024
Research and Development, Miltenyi Biotec, Bergisch Gladbach, Germany.
Recent studies have revealed the potential of tumor-infiltrating lymphocytes (TILs) to treat solid tumors effectively and safely. However, the translation of TIL therapy for patients is still hampered by non-standardized and laborious manufacturing procedures that are expensive and produce highly variable cellular products. To address these limitations, the CliniMACS Prodigy Tumor Reactive T cell (TRT) Process has been developed.
View Article and Find Full Text PDFCytotherapy
December 2024
Department of Transfusion Medicine, Center for Cellular Engineering, National Institutes of Health, Bethesda, Maryland, USA. Electronic address:
Background: Chimeric antigen receptor T (CAR-T) cells have significantly advanced the treatment of cancers such as leukemia and lymphoma. Traditionally, T cells are collected from patients through leukapheresis, an expensive and potentially invasive process that requires specialized equipment and trained personnel. Although whole blood collections are much more technically straightforward, whole blood starting material has not been widely utilized for clinical CAR-T cell manufacturing, in part due to lack of manufacturing processes designed for use in a good manufacturing practice (GMP) environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!