A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Different surface treatments and adhesive monomers for zirconia-resin bonds: A systematic review and network meta-analysis. | LitMetric

Different surface treatments and adhesive monomers for zirconia-resin bonds: A systematic review and network meta-analysis.

Jpn Dent Sci Rev

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.

Published: December 2024

This review examined the efficacy of surface treatments and adhesive monomers for enhancing zirconia-resin bond strength. A comprehensive literature search in PubMed, Embase, Web of Science, Scopus, and the Cochrane Library yielded relevant in vitro studies. Employing pairwise and Bayesian network meta-analyses, 77 articles meeting inclusion criteria were analyzed. Gas plasma was found to be ineffective, while treatments including air abrasion, silica coating, laser, selective infiltration etching, hot etching showed varied effectiveness. Air abrasion with finer particles (25-53 µm) showed higher immediate bond strength than larger particles (110-150 µm), with no significant difference post-aging. The Rocatec silica coating system outperformed the CoJet system in both immediate and long-term bond strength. Adhesives containing 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) were superior to other acidic monomers. The application of 2-hydroxyethyl methacrylate and silane did not improve bonding performance. Notably, 91.2 % of bonds weakened after aging, but this effect was less pronounced with air abrasion or silica coating. The findings highlight the effectiveness of air abrasion, silica coating, selective infiltration etching, hot etching, and laser treatment in improving bond strength, with 10-MDP in bonding agents enhancing zirconia bonding efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208804PMC
http://dx.doi.org/10.1016/j.jdsr.2024.05.004DOI Listing

Publication Analysis

Top Keywords

bond strength
16
air abrasion
16
silica coating
16
abrasion silica
12
surface treatments
8
treatments adhesive
8
adhesive monomers
8
selective infiltration
8
infiltration etching
8
etching hot
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!